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investigation into the open and active question of how to integrate structural 
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bridges.  Much of the research has been motivated by and has evolved through 
participating in technical committees, mini-symposia, and workshops dedicated 
to civil infrastructure, monitoring, reliability concepts, life-cycle concepts, and 

ii 



 Preface 
 

risk.  To date, this investigation has resulted in the publication (in various 
stages) of two book chapters, one journal article, 3 keynote lectures, 3 invited 
book contributions, 2 invited conference papers, and 10 traditional conference 
papers.  The strength of this thesis is its breadth in how to approach the problem 
and its linkages across multiple disciplines.  However and correspondingly, its 
weakness is a lack of depth on the study of any particular application and as part 
of a larger research question and an open field of activity, it does not reach a 
definitive conclusion that finalizes the needed research in the topic area.  
However, several procedural and technical contributions developed herein 
represent important steps in that process. 

In assessing the quality of any effort of this magnitude, it may be difficult to 
determine what work is original and what work is taken from other sources and 
applied.  For this reason, the author’s primary contributions to the body of 
knowledge are highlighted as follows: 
 
 
Procedural 
 

• Developing strategies for the top-down design of SHM systems at the 
program level and at the structural level. (Chap 4) 

• Developing a framework for the incorporation of structural health 
monitoring (SHM) in life-cycle management (LCM) approaches.  
(Chap 2-4) 

• Developing the equations for the comparison of Life-Cycle costs for 
monitoring vs. non monitoring alternatives.  (Chap 4) 

 
 
Technical 
 

• Developing a method to account for time-effects with respect to 
monitoring-based live loads through the application of extreme value 
statistics.  (Chap 5) 
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• Developing a method to account for parameter uncertainties with 
respect to the characterization of monitoring-based distributions for use 
in a reliability analysis.  (Chap 5) 

• Revisiting the basic principles of reliability and structural 
reliability concepts to link the use of monitoring data, classical 
reliability concepts, structural reliability theory, and the use of 
lifetime functions.  (Chap 6) 
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Italiano 
 

Il dottorato di ricerca in Ingegneria Civile dell'Università degli Studi di Pavia è 
stato istituito nell'anno accademico 1994/95 (X ciclo). Il corso consente al 
dottorando di scegliere tra quattro curricula: Idraulico, Sanitario, Sismico e 
Strutturale. Egli svolge la propria attività di ricerca presso il Dipartimento di 
Ingegneria Idraulica e Ambientale per i primi due curricula, quello di 
Meccanica Strutturale per i rimanenti. Durante i primi due anni sono previsti 
almeno sei corsi. Il Collegio dei Docenti, composto da professori dei due 
Dipartimenti (e da esterni cooptati in mancanza di competenze interne), 
organizza i corsi con lo scopo di fornire allo studente di dottorato opportunità di 
approfondimento su alcune delle discipline di base. Corsi e seminari vengono 
tenuti da docenti di Università nazionali ed estere. Il Collegio dei Docenti, cui 
spetta la pianificazione della didattica, si è orientato ad attivare ad anni alterni 
corsi comuni sui seguenti temi: 
 

- Meccanica dei solidi e dei fluidi. 
 

- Metodi numerici per la meccanica dei solidi e dei fluidi. 
 

- Rischio strutturale e ambientale. 
 

- Metodi sperimentali per la meccanica dei solidi e dei fluidi. 
 

- Intelligenza artificiale. 
 

più corsi specifici di indirizzo. Al termine dei corsi del primo anno il Collegio 
dei Docenti assegna al dottorando un tema di ricerca da sviluppare sotto forma 
di tesina entro la fine del secondo anno; il tema, non necessariamente legato 
all'argomento della tesi finale, è di norma coerente con il curriculum, scelto dal 
dottorando. All'inizio del secondo anno il dottorando discute con il 
Coordinatore l'argomento della tesi di dottorato, la cui assegnazione definitiva 
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viene deliberata dal Collegio dei Docenti. Alla fine di ogni anno i dottorandi 
devono presentare una relazione particolareggiata sull'attività svolta. Sulla base 
di tale relazione il Collegio dei Docenti, "previa valutazione della assiduità e 
dell'operosità dimostrata dall'iscritto", ne propone al Rettore l'esclusione dal 
corso o il passaggio all'anno successivo. Il dottorando può svolgere attività di 
ricerca sia di tipo teorico che sperimentale, grazie ai laboratori di cui entrambi i 
Dipartimenti dispongono, nonché al Laboratorio Numerico di Ingegneria delle 
Infrastrutture. Il "Laboratorio didattico sperimentale" del Dipartimento di 
Meccanica Strutturale offre: 
 

- una tavola vibrante che consente di effettuare prove dinamiche su 
prototipi strutturali; 
 

- opportuni sensori e un sistema di acquisizione dati per la misura della 
risposta strutturale; 
 

- strumentazione per la progettazione di sistemi di controllo attivo e loro 
verifica sperimentale; 
 

- strumentazione per la caratterizzazione dei materiali, attraverso prove 
statiche e dinamiche. 

 
Il laboratorio del Dipartimento di Ingegneria Idraulica e Ambientale dispone di: 

 
- un circuito in pressione per effettuare simulazioni di moto vario; 

 
- un tunnel idrodinamico per lo studio di problemi di cavitazione; 

 
- canalette per lo studio delle correnti a pelo libero. 
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English 
 
The Graduate School of Civil Engineering at the University of Pavia was 
established in the Academic Year of 1994/95 (X cycle). The School allows the 
student to select one of the four offered curricula: Hydraulics, Environment, 
Seismic engineering and Structural Mechanics. Each student develops his 
research activity either at the Department of Hydraulics and Environmental 
Engineering or at the Department of Structural Mechanics. During the first two 
years, a minimum of six courses must be selected and their examinations 
successfully passed. The Faculty, made by Professors of the two Departments or 
by internationally recognized scientists, organizes courses and provides the 
student with opportunities to enlarge his/her basic knowledge. Courses and 
seminars are held by University Professors from all over the country and 
abroad. The Faculty starts up in alternate years common courses, on the 
following subjects: 
 

- solid and fluid mechanics, 
 

- numerical methods for solid and fluid mechanics, 
 

- structural and environmental risk, 
 

- experimental methods for solid and fluid mechanics, 
 

- artificial intelligence. 
 
More specific courses are devoted to students of the single curricula. At the end 
of each course, for the first year the Faculty assigns the student a research 
argument to develop, in the form of report, by the end of the second year; the 
topic, not necessarily part of the final doctorate thesis, should be consistent with 
the curriculum selected by the student. At the beginning of the second year the 
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student discusses with his Coordinator the subject of the thesis and, eventually, 
the Faculty assigns it to the student. At the end of every year, the student has to 
present a complete report on his research activity, on the basis of which the 
Faculty proposes to the Rector his admission to the next academic year or to the 
final examination. The student is supposed to develop either theoretical or 
experimental research activities, and therefore has access to the Department 
Experimental Laboratories, even to the Numerical Laboratory of Infrastructure 
Engineering. The Experimental Teaching Laboratory of the Department of 
Structural Mechanics offers: 

 
- a shaking table which permits one to conduct dynamic tests on 

structural prototypes; 
 

- sensors and acquisition data system for the structural response 
measurements; 
 

- instrumentation for the design of active control system and their 
experimental checks; 
 

- an universal testing machine for material characterization through static 
and dynamic tests. 

 
The Department of Hydraulics and Environmental Engineering offers: 

 
- a pressure circuit simulating various movements; 

 
- a hydrodynamic tunnel studying cavitation problems; 

 
- micro-channels studying free currents. 
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Chapter 1 
 
 
 

INTRODUCTION 
 
 
 

1.1 Underlying Grant and Research Topic 
 
This thesis is motivated by and constructed in support of the below listed US 
National Science Foundation Grant, with my research advisor, Professor Dan 
M. Frangopol, Lehigh University, as the Principle Investigator. 
 
NSF Grant Title: Integrated Maintenance-Monitoring- Management Framework 
for Optimal Decision Making in Bridge Life-Cycle Performance (Principal 
Investigator: Professor Dan M. Frangopol, University of Colorado at Boulder 
2005-2006, and Lehigh University 2006-2009). 
 
Abstract: In this proposed research, an analytical and computational 
framework for integrated maintenance-monitoring- management systems 
(IMS) of highway bridges will be developed. This framework will combine in a 
novel manner emerging health monitoring techniques, time-dependent structural 
reliability theory, life-cycle costing, Bayesian updating approaches, highway 
transportation network analysis, and optimization. Methodologies for 
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predicting lifetime safety and performance of highway bridges with and 
without monitored data will be developed. Particular emphases will be placed 
on proper treatment of various uncertainties associated with loading, 
environmental stressors, structural resistances, deterioration processes, and 
monitoring and maintenance activities. Cost-effectiveness of different health 
monitoring technologies in improving both the prediction of bridge 
performance and the quality of subsequent management decisions will be 
systematically addressed. The proposed IMS will be formulated as a nonlinear, 
discrete, combinatorial optimization problem for which multiple and conflicting 
objectives will be considered. These objectives will address bridge safety and 
performance as well as long-term economic consequences. Evolutionary 
computation will be performed to produce a group of Pareto-optimal tradeoff 
solutions for the decision-making process. 
 

1.2 Organization of the thesis  
This thesis is only one contribution of several to the proposed research topic.  
Main areas of contribution and focus for the author have been highlighted in the 
grant abstract and include 
 

• Analytical and computational frameworks  
• Methodologies for predicting lifetime safety and performance 
• Proper treatment of uncertainties  
• Cost effectiveness of SHM 
 

The contributions of this thesis are divided into 7 chapters.  Two chapters are 
organizational (Introduction and Conclusion), two are informational/procedural 
(Chapter 2 and Chapter 3), two are technical (Chapter 4 and Chapter 5) in 
nature, and Chapter 6 is mixed (procedural/technical).  Each chapter is briefly 
summarized below:  
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Chapter 1 Introduction 
 

Chapter 1: Introduction 
Chapter 1 simply serves as an organization of the thesis and provides a short 

abstract of each chapter. 
 

Chapter 2: Motivation, Aim, and Scope 
Chapter 2 provides the reader an introduction to the subject material.  The 

aging infrastructure problem is described and the motivation and necessity for 
the improved assessment, performance prediction, and management of civil 
infrastructure is presented.  Several prominent books, journals, professional 
associations, research centers, and conferences are provided as references for 
researchers new to the field.  Basic concepts surrounding the life-cycle 
assessment, performance prediction, and management of civil infrastructure are 
provided with references to important works.  The same is provided for the field 
of structural health monitoring.  Several mathematical models and decision 
making approaches that enable life-cycle management  and structural health 
monitoring are detailed.  These include reliability concepts, risk-based decision 
making, Bayesian updating, system analysis, and time dependent reliability.  
After the presentation of these basic concepts, the aim and scope of the thesis is 
presented.  

 
Chapter 3: Effect of Monitoring on the Reliability of Structures 

Chapter 3 investigates the question of how more accurate information and 
reduced uncertainty change the design, assessment, and performance prediction 
of civil infrastructure.  To fully explore this question, the evolution and state of 
the art of design methods, inspection programs, assessment models, and 
management programs are presented.  How structural health monitoring can 
serve as a catalyst to improve the state of the art in each discipline is provided.  
An application that demonstrates risk-based decision making based off total 
expected cost is developed.  In this application, one approach for the 
standardization of the calculation of the consequence of failure cost and the 
potential benefit of SHM using established code based guidelines is presented.   
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Chapter 4: Integration of Health Monitoring in Asset Management in a Life-
Cycle Perspective 

Chapter 4 is the main procedural contribution of the thesis and develops a 
top-down approach to the integration of SHM in asset management.  Beginning 
at the strategic level, considerations for the development of national monitoring 
programs are presented.  Differences in funding, ownership, codes, and public 
policy are highlighted between different countries.  For adoption by any nation, 
a paradigm of mutually supporting adoptions-in-concert aimed to facilitate 
coordinated and synchronized actions amongst different interested parties 
involved in solving the aging infrastructure problem is provided.  At the 
national level, network level, and individual structural level, the procedural 
steps required to allocate monitoring resources to the most critical structures, for 
the most critical materials and failure modes, at the most critical locations, at 
the optimal point in times are discussed.  Frameworks for the inclusion of SHM 
in LCM are provided to include the development of the equations necessary to 
incorporate SHM in life-cycle calculations.  An application is provided that 
sequentially builds a time-dependent reliability analysis of increasing 
complexity with a critique of the assumptions and modelling limitations for at 
each step.    
 
Chapter 5: The Development of Monitoring-Based Live Load Effects for Use in 
a Reliability analysis 

Chapter 5 is the main technical contribution of the thesis and explores in 
detail the characterization of monitoring-based live loads for use in a reliability 
analysis using the statistics of extreme values.  The theory of extreme values is 
presented and simulations are developed to demonstrate that extreme value 
distributions can be observed via peak picking (instead of predicted from an 
underlying baseline distribution) and that the convolution of multiple random 
processes converges to an extreme value distribution.  The accuracy and 
stability of monitoring-based distribution parameters are directly correlated to 
the amount of data used for their characterization and how that data is 
processed.  Two separated approaches are developed and presented to treat this 
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parameter uncertainty to provide a framework for its inclusion in a reliability 
analysis.  The process is demonstrated on a case study of the Lehigh River 
Bridge located in Pennsylvania, USA using approximately 90 days of 
monitoring data. 

 
Chapter 6: Lifetime Structural Health Monitoring Based on Survivor Functions, 
Hazard Functions and Cost 

Chapter 6 investigates several different approaches to the solution of the 
time-dependent reliability problem.  Classical reliability concepts, lifetime 
functions, and their extension to structural reliability concepts are discussed.   
Assumptions, advantages, and limitations of the different models are provided.  
The application of Chapter 4 is continued using one time-dependent reliability 
approach with the inclusion of risk calculations.  This chapter is important 
because it revisits the basic principles for the construct of the performance 
profiles which drive the safety assessment, scheduling, and conduct of 
maintenance and repair activities.    

 
Chapter 7: Conclusions 

Chapter 7 briefly outlines conclusions and proposed areas for future research 
based off this study. 
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Chapter 2 
 
 
 

MOTIVATION, BASIC CONCEPTS, AIM 
AND SCOPE 
 
 
 

Abstract 
Active management of aging civil infrastructure is a 21st century problem 

that has to be solved as the condition and safety of existing structures 
deteriorate.  Transcending national borders, this problem will challenge our 
thinking, methodology, and ability to incorporate new technologies into existing 
approaches and real-world applications.  Although great progress in the fields of 
civil infrastructure management, construction, and structural health monitoring 
has been made, integration of the milestones in each field remains an area in 
need of research.  This chapter provides many of the underlying principles for 
these fields as well as the existing state of the art.  References to important 
works are provided as well as the identification of important journals, societies, 
conferences, and books.  Highlighted basic concepts explained in this chapter 
include life-cycle concepts, structural reliability, time dependent reliability 
analysis, bridge management programs, inspection scheduling and planning, 
maintenance activities, risk-based decision making, Bayesian updating, and 
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structural health monitoring.  Lastly, the aim and scope of this thesis is 
provided. 

2.1 Motivation 
 

2.1.1 General 
Structural health monitoring (SHM) is likely the enabling technology that 

will lead to the next significant evolution of the design, assessment, and 
management of civil infrastructure.  Similar to the impact brought about by 
computers and structural analysis programs, access to site-specific data across a 
variety of measurements provides the capability to implement several concepts, 
methods, and ideas that have existed for some time, but have not yet matured in 
practical applications.  These include, among others, the smart system concept, 
multifunctional materials, performance and durability based design, life-cycle 
design, reliability-based structural assessment, and damage detection 
capabilities.  Although effort is typically given to a very specific part of the 
problem, such as perhaps the design of a particular sensor, a very interesting 
perspective is brought about by considering how such capabilities will ripple 
through public policy, code specifications, inspection programs, and educational 
courses as well as the processes of design and assessment. 

Developing and leveraging the use of monitoring technologies for civil 
applications requires insight, planning, and will remain an open area of research 
for the foreseeable future.  The rapid pace of advances in SHM technologies 
provides a sharp contrast when compared to the time required to affect changes 
in civil engineering, a field governed by laws, codes, time-tested experience, 
and where projects themselves may span decades.  Although SHM offers great 
potential, it should be anticipated that such technologies will not be adopted 
unless they are subsidized, required by code, or proven cost-effective due to 
competing resource demands from the backlog of required maintenance and 
rehabilitation activities on existing structures.  As such, metrics and methods 
that calculate and communicate the costs and benefits associated with 
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monitoring must be identified and employed so that alternatives may be 
adequately compared.   

Change is a natural and inherent part of civil engineering.  The past several 
decades have witnessed design methodologies shift from deterministic-based 
approaches, such as allowable stress design, to the semi-probabilistic 
approaches found in current codes such as American Association of State 
Highway and Transportation Officials (AASHTO, 2007), the Canadian 
Highway Bridge Design Code (CHBDC, 2000), and the European Highway 
Agency Eurocodes (EUROCODES, 2002).  In the near future, performance-
based design will likely be adopted as progress in materials, design software, 
construction methods, and structural health monitoring empower the structural 
engineer to better address the uncertainties inherent to the design and operation 
of civil structures.  Although the methods have continued to evolve over time, 
their intent has remained constant.  Each approach (deterministic, semi-
probabilistic, and probabilistic) seeks an optimal balance between economical 
design and safe performance. 

 
2.1.2 Reasons and Catalysts for Change 

Change is typically brought about by opportunity, necessity, or tragedy.  
Over the course of study for this thesis and at this point in time (August, 2008), 
all three aspects have captured worldwide attention to some extent.   

 
2.1.2.1 Catalyst for Change: Opportunity  

Opportunity has presented itself through technological advancements and 
improvements to existing methodologies.  With respect to monitoring 
technologies, reductions in size, wireless capabilities, improved energy 
performance, and reductions in cost are making SHM practical for civil 
structure applications.  Although monitoring devices have existed for some 
time, they have typically required a controlled environment, hard wired cables, 
and immense effort to obtain data making their application in a field 
environment difficult.  Recent improvements in these devices are now making it 
feasible to obtain site-specific response data cost effectively and offer great 
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potential with respect to the design, assessment, maintenance, and rehabilitation 
of civil infrastructure (Frangopol and Messervey, 2007a).   

With respect to existing methodologies, lessons learned maintaining existing 
structures and the emergence of life-cycle concepts have also presented the 
opportunity to improve the state of the art.  Most often, structural design, or 
purchasing in general, focuses on obtaining the least cost solution that fulfills 
specified requirements.  Over the past several decades, efficiencies have been 
gained through reductions in structural weight as material properties, 
construction methods, and design software technologies have improved (Estes 
and Frangopol, 2005a).  Although it is implied that concrete will require repair, 
roofs will need to be replaced, and paints be reapplied, the intended service life 
of a structure is often left unspecified.  In such cases, project bids consider only 
the initial costs of design and construction and upon completion the structure is 
turned over to the owner with the absence of a maintenance plan.  Maintenance 
and repair activities are then likely to become an ad-hoc reaction whenever a 
defect manifests itself at which time a maintenance program is developed 
(Bijen, 2003).  Unfortunately, in terms of expense, research in the field of life-
cycle management has shown that the costs of inspecting, maintaining, and 
repairing a structure over its useful lifespan often dwarf those associated with 
the initial design.  This is compounded by the frequent desire to extend the 
service life of a structure beyond that originally intended.  The result is a non-
optimal allocation of resources over the life of the structure. 

 
2.1.2.2 Catalyst for Change: Necessity  

Sustainable economic growth, productivity, and the well being of a nation 
are intimately linked to the reliability and durability of civil structures such as 
buildings, bridges, dams, and transportation networks (Frangopol and Liu, 
2006).  To this end, comparisons across countries in varying stages of 
development can be used to show that Gross Domestic Product (GDP), life 
expectancy, and infrastructure development are highly correlated.  As a result, 
society relies on its engineers and government to design, maintain, and regulate 
structures that are safe and perform as intended over their service lives.  In 
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terms of magnitude, new civil engineering construction is the largest industry in 
the world representing approximately 10% of annual GDP.  Of this 10% of 
GDP spending, an estimated 5-10% is the result of the failure (not necessarily 
collapse) of existing structures (Bijen, 2003).  For most countries, existing 
structures and civil infrastructure are their most valuable assets and their upkeep 
represents one of their most significant investments.  Unfortunately, these assets 
are deteriorating at an alarming rate due to overuse, overloading, aging or 
damage (Chong et al., 2003).   

Highway bridges are likely the subset of civil infrastructure in the most 
critical condition and provide an excellent example of the problem.  In the 
United States, many of the bridges constructed as part of the Eisenhower 
Interstate expansion in the 1950s, 1960s, and 1970s are approaching the end of 
their planned service lives.  These structures serve as critical nodes that link 
highways, interstates, and provide river crossings.  By their very nature, bridges 
are vulnerable to and are constantly subjected to aggressive environments which 
include chemical attack from de-icing salts, environmental stressors such as 
wind, temperature, and water, as well as continuously increasing traffic volumes 
and heavier truck loads (Frangopol and Liu, 2007).   The point of increasing 
traffic volumes and heavier vehicles is non-trivial and is highlighted in Figure 1 
which shows typical New York City traffic when most its major bridges were 
constructed (early 1900s) compared to today.   

 
 
 
 
 
 
 
 
 
Figure 2.1. NYC traffic of the early 20th Century across the Brooklyn Bridge 

(Esther Bubley at Brooklyn Museum online) and traffic of the early 21st Century 
across the George Washington Bridge (Seth Holladay at flickr online). 
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The same scenario of increasing traffic loads and frequencies is present 
worldwide.  In Denmark, traffic in terms of kilometres driven nationally 
doubled in a single decade during the period 1992-2002 (Enevoldsen, 2008).  
Considering Europe as a whole, the European Union currently projects a 
doubling in freight volumes that travel by road in the period 2000-2030 
(Enevoldsen, 2008).  In order to accommodate such increases in traffic either 
new highway networks must be constructed or allowable truck weights must be 
increased.  In already congested urban areas, the construction of additional 
highways may be impossible.  From an assessment and management 
perspective of existing bridges, two questions are immediately apparent.  First, 
did the original (deterministic) design envision and provide adequate levels of 
safety for modern traffic loading and frequency?  Second, have traffic increases 
resulted in faster rates of deterioration across bridge joints, members, and 
systems? 

The deterioration of highway bridges in North America, Europe, and Japan 
is well documented and publicized.  In general, highway networks reached 
maturity in the mid 20th century and attention shifted from construction 
techniques to inspection and management programs.  In the United States, 
several bridge failures in the 1960s, including the tragic collapse of the Silver 
Bridge due to instantaneous eyebar fracture, focused national attention on the 
deterioration of existing bridges with emphasis on bridge safety (Small and 
Cooper, 1998a; Small and Cooper, 1998b).  As a result, the Federal Highway 
Act of 1968 established the requirement for regular bridge inspections.  This act 
was soon followed by the AASHTO “grey book” Manual for Maintenance 
Inspection of Bridges (1970) and the Federal Highway Administration (FHWA) 
has revised national bridge inspection standards (NBIS) almost yearly as 
methods and the base of knowledge in the field have improved.  Although it 
may be comfortable to think of such bridge failures as a problem of the past, the 
recent failures of highway bridges at the Laval Overpass in Canada (2005) and 
the I-35W Bridge in Minneapolis, USA (2007) serve as reminders that this is 
also a problem of today. 
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Now containing approximately 40 years of inspection results, the National 
Bridge Inventory (NBI) is a richly populated database classifying the state of 
U.S. bridges based primarily on biannual visual inspections (FHWA, 2007).  In 
1998, the American Society of Civil Engineers (ASCE) began publishing a 
Report Card on the Nation’s Infrastructure which was again updated in 2001, 
2003, and 2005.  This report currently consists of 15 categories of which one is 
bridges.  It is likely that this ASCE report card has brought the most attention to 
the current status of bridges in the USA (ASCE, 2005). 

In the United States, 25.8% of the 596,808 existing bridges were structurally 
deficient or functionally obsolete as of the end of 2006 (FHWA, 2007).  
Structurally deficient bridges are closed or restricted to light vehicle traffic due 
to deteriorated structural components.  Functionally obsolete bridges are those 
which no longer meet code requirements and warrant replacement or retrofit.  It 
is worth noting that the percentage of deficient bridges is higher in urban areas 
(31.6%) than in rural areas (25.6%).  This is likely correlated to the higher 
volume of traffic as well as the tendency to postpone maintenance and repairs 
on urban bridges due to the traffic disruptions and the additional congestion 
created during their repair.  Using statistics from the U.S. National Bridge 
Inventory (NBI), Figure 2 provides a graphical representation of the problem. 
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Figure 2.2. Two representations of the classification of highway bridges using US 
NBI statistics (data taken from FHWA, 2007). 
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Figure 2a depicts the number, classification, and year constructed for the 
U.S. bridge population.  Figure 2b provides this same information but clearly 
identifies the expected trend that a larger percentage of older structures are 
deficient.  From these figures it is noted that the majority of U.S. bridges are 
clustered between the ages of 30 and 50 years old and that this group of 
structures is approaching an age where a larger percentage is projected to 
become deficient.  For this reason, we are approaching what some describe as 
the age of “mass maintenance” with similar trends being reported in Europe and 
in Asia (Peil, 2003, Fujino and Abe, 2004).   It is not clear if current repair and 
rehabilitation efforts are keeping pace with the rate of new deficiencies. 

Placing a dollar amount on the highway bridge problem is difficult.  In the 
United States, an estimated annual investment of $9.4 billion for the next 20 
years is required (ASCE, 2005).  However, this data point was as of 2005 and 
the U.S. has since seen a tripling of commodity prices and bond-funded projects 
have been impacted by a credit crisis.  Such figures also do not take into 
account the negative impact on commerce and productivity due to the traffic 
delays and congestion typically associated with bridge replacement or repair.  It 
is estimated that hundreds of billion ton-miles of goods and materials along 
with several trillion passage-miles are transported on highway networks in the 
United States every year (BTS, 2003) and that this connectivity has made 
significant contribution to the Nation’s economy and quality of life (Tolliver, 
1994).  For all previously listed reasons, there is a great need for methods and 
technologies to help assess these structures, prioritize repairs, and enable the 
efficient allocation of funds. 

 
2.1.2.3 Catalyst for Change: Tragedy  

Over the past several decades, the challenges associated with the 
maintenance, safety, and condition of civil infrastructure worldwide have 
passed from an issue handled and discussed amongst a relatively small group of 
engineering professionals, to one that has essentially become common public 
knowledge.  In the U.S., the ASCE infrastructure report card is published, 
available online, and frequently cited by researchers and news agencies.  In 

14 



Chapter 2 Motivation, Basic Concepts, Aim and Scope 
 

addition, the Federal Highway Administration publishes and makes available 
online its strategic plan, provides data on bridge replacement and rehabilitation 
projects, and maintains the National Bridge Inventory database which contains 
over 40 years of bridge inspection results (FHWA, 2008).  Bringing this 
information to an even wider audience and to draw attention to the issue, the 
internet news portal MSNBC now maintains an interactive map system 
allowing users to enter the route they travel which will then display the statistics 
of each bridge along that route highlighting those deficient (Dedman, 2007a, b, 
c).  For the author, it has been interesting to research an issue over the span of a 
few years and to watch it repeatedly make national and international news with 
increasing frequency.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3. From top left to bottom right, the U.S. Northeast Blackout of 2003 

(Defence Meteorological Satellite Program), a failed levee in New Orleans during 
Hurricane Katrina in 2005 (Associated Press), the 2006 collapse of an interstate 

overpass in Laval, Canada (CCTV News), and the 2007 Collapse of the I35W 
Bridge in Minneapolis, Minnesota (Minnesota State Department of 

Transportation). 

15 



Thomas B. Messervey Integration of SHM into the LCM of Civil Infrastructure 
 
 

As is often the case with engineering, disasters, mistakes, and tragedies often 
act as the catalyst for change.  Figure 3 shows four recent infrastructure failures 
that have acted as agents for change and that that contain pertinent and recurrent 
themes.  In 2003, overgrown tree branches led to a blackout of the Northeast 
power grid that left over 50 million people without power shutting down 
transportation networks, airports, and nuclear facilities (Wikipedia, 2008a).  
This event exposed the fragility and lack of robustness in the power grid.  The 
issue of robustness was (and still is) already topic under investigation in 
response to the structural collapses associated with the terrorist attacks of 9/11.  
In 2005, Hurricane Katrina devastated the New Orleans area resulting in 
massive financial losses and the significant loss of human lives (Wikipedia, 
2008b).  The focal point of this tragedy became the failure of over 50 protective 
levees surrounding New Orleans.  Although investigations by the U.S. Army 
Corps of Engineers have determined that a design error contributed to the 
failure, an equally or more important contributing factor was that the levee 
system was designed for hurricanes up to Category 3 intensity whereas Katrina 
was a Category 5 storm.  Although strengthening and increasing the height of 
the levee system had been proposed, it was never adopted due to the high costs 
of such a project.  This raises the questions: How safe is safe enough? What 
level of risk is appropriate? and who is the decision authority?  In 2006, an 
interstate highway overpass collapsed during routine usage in Laval, Canada 
killing 6 people (CTVNews, 2006).  The cause of the collapse was the 
debonding of the internal steel reinforcement due to corrosion at the deck-
column interface for the reinforced concrete structure.  Important facts related to 
this collapse are that the bridge had recently passed its periodic visual 
inspection, that hours before the event transportation officials were alerted to 
and cleaned up spalling material that had dropped onto the motorway below the 
overpass, and that immediately prior to the event, motorists reported a 
noticeable drop as they began crossing the bridge.  This tragedy highlighted the 
ongoing question of the effectiveness of visual-based inspections and whether 
or not they provide an adequate level of safety.  Because there was some type of 
advanced warning as motorists reported irregularities, this event also raised the 
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question of what are the appropriate response mechanisms, communication 
channels, and decision authorities as an incident develops.  Lastly, in 2007 the 
I35W Minneapolis Bridge in Minnesota, USA collapsed while in service killing 
13 and injuring 100 people (Cho & Van Hampton, 2008).   The failure was 
likely due to a design error of the thickness of a gusset connection.  Important 
factors related to this collapse are that the structure had already been listed as 
deficient for 17 years during successive visual inspections, in 2005 it was rated 
in the bottom 5% of its peer group (high-traffic bridges) with its superstructure 
rated as “poor”, and that major repairs were delayed on several occasions due to 
budgetary constraints (Dedman, 2007, Associated Press, 2008).  Additionally, 
heavy construction equipment was operating on the structure conducting minor 
repairs when the structure collapsed.  This failure in specific epitomizes the 
aging infrastructure problem – that known existing deficiencies across over 
200,000 bridges can result in sudden failure with high consequence.  
Additionally, the event and ensuing investigation have placed scrutiny on all 
aspects of bridge safety to include design practices, considerations for non-
redundant structures, inspection and management programs, and the proper 
conduct of maintenance and repair activities.  Lastly, this tragedy serves as a 
reminder of the magnitude and severity of the indirect costs associated with 
such failures which include the loss of public confidence and trust, site cleanup 
expenses, emergency inspections of like structures, user delays, longer travel 
distances, decreases in productivity, and legal ramifications.  Collectively, these 
four failures (and others) have focused worldwide attention on questions 
engineers face daily regarding safety, risk, and the optimal allocation of 
resources.   

Against this backdrop, monitoring technologies have the potential to 
improve the design, assessment, and management of civil infrastructure in 
several ways: (a)  performance-based design can be conducted by recording site 
specific conditions such as wind, load demands, or temperature, (b) inspections 
can be scheduled on an “as needed” basis driven by structure specific data when 
indicated by monitoring data, (c) the accuracy of structural assessments can be 
improved by analyzing recorded structural response data, (d) as a result of more 
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accurate information provided as input to analytical models, maintenance, 
repair, and replacement activities can be optimally scheduled which results in 
cost savings, and (e) performance thresholds can be established to provide 
warning when prescribed limits are violated.  However, these benefits also 
come with an associated life-cycle cost as monitoring systems must be 
purchased, installed, maintained, and their information processed and assessed.  
As a result, a truly optimal and efficient design needs to consider and evaluate 
the costs and benefits of different strategies and approaches. 

 

2.2 Basic Concepts 
The greatest challenge in researching and contributing to this field of study 

is its breadth and the time required to identify and correctly apply the concepts 
across the associated disciplines.  Additionally, the balance between theoretical 
work (models), design manuals and code provisions (legality), technical 
feasibility (sensor limitations), practicality for infrastructure managers, and cost 
must always be considered.  This thesis is only a starting point.  For the 
interested researcher, the below sources are highlighted.  The list is by no means 
inclusive, is certain to leave many important sources unmentioned, and should 
be regarded primarily as a personal listing experienced by the author.  
 
Books 
 
Fibre Optic Methods for Structural Health Monitoring (Glisic and Inaudi, 2007)  
Durability of Engineering Structures: Design, Repair and Maintenance. (Bijen, 2003) 
Probabilistic Risk Assessment of Engineering Systems (Stewart and Melchers, 1997) 
Structural Reliability Analysis and Prediction, 2ed (Melchers, 1999) 
Probability Concepts in Engineering Planning and Design Vol. I & II (Ang and Tang, 
1984, Ang and Tang, 2007) 
Reliability: Probabilistic Models and Statistical Methods (Leemis, 1995) 
 
Journals 
 
Structural Control and Health Monitoring (ed. Lucia Faravelli) 
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Structure and Infrastructure Engineering (ed. Dan M. Frangopol)  
Structural Health Monitoring (ed. Fu-Kuo Chang)   
 
Professional Associations 
 
IABMAS (International Association for Bridge Maintenance and Safety), 
IABSE (International Association for Bridge and Structural Engineering) 
IALCCE (International Association for Life-Cycle Civil Engineering) 
ISHMII (International Society for Structural Health Monitoring of Intelligent  
 Infrastructure) 
SAMCO (European network of Structural Assessment Monitoring and Control) 
   
Research Centers 
 
ATLSS (Advanced Technology for Large Structural Systems)  

at Lehigh University 
CIBrE (Center for Innovative Bridge Engineering)  

at the University of Delaware 
CIMSS (Center for Intelligent Material Systems) 

at Virginia Tech 
EMPA (Swiss Institute of Materials Science)  

at Dubendorf, Switzerland 
ISIS (Intelligent Sensing for Innovative Structures)  

at the University of Manitoba, Canada 
LIST  (Laboratory for Intelligent Structure Technology)  

at the University of Michigan 
SFB398 (Co-operative Research Center for Lifetime Oriented Design Concepts)  
 at the Ruhr-University Bochum, Germany 
SISTeC (Smart Infra-Structure Technology Center)  

at Kaist, Korea 
SFB477 (Collaborative Research Center on Life-Cycle Assessment of  

Structures via Innovative Monitoring) 
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at the Technical University of Braunschweig, Braunschweig, Germany 
SSTL (Smart Structures Technology Laboratory)  

at the University of Illinois at Urbana-Champaign 
 
Major Conferences 
 
IABMAS: Biannual 
IALCCE: Biannual 
ICOSSAR: Every 4 years 
IWSHM: Yearly, alternating between US and Europe 
SHMII: Biannual 
SMART: Biannual 
 
2.2.1 Life-Cycle Performance Prediction 

The intended service lives of buildings, bridges, and dams span decades or 
even centuries. During this period of time and aside from routine and 
anticipated loads, these structures are possibly subjected to abnormal loadings 
of different types that include natural hazards (e.g., earthquake, flood, 
hurricane) as well as manmade disasters (e.g., fire, vehicle collision, terrorist 
attack) (Frangopol and Liu, 2006).  Meanwhile, structural safety and condition 
gradually deteriorate due to normal wear and tear as well as exposure to 
aggressive environmental stressors (heating and cooling cycles, chloride ingress 
from de-icing salts, and freeze-thaw effects).  In general, steel corrodes, 
concrete spalls, wood rots, and all materials crack as they age and progress 
through their service life.  In each case, the capacity of the structure to safely 
carry loads is reduced and the functionality of the structure may be impaired.  
Due to the uncertainties surrounding in-service loads and deterioration 
processes, the performance of the structure may not follow initial predictions as 
depicted in Figure 2.4 (Without Maintenance).  This can result in either 
unacceptable levels of performance or the failure of the structure to reach its 
intended service life.   
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Figure 2.4.  Lifetime structural performance without maintenance and with 

maintenance (adapted from Frangopol, 1998, Frangopol and Liu, 2006). 
 

In response to these concerns, maintenance and risk mitigation are required 
to ensure satisfactory performance over the life of a structure as shown in 
Figure 2.4 (With Maintenance).  Maintenance actions can be preventive in 
nature (e.g. the application of sealer on a bridge deck) or corrective (e.g. the 
replacement of a structural member or system).  Because maintenance needs are 
often greater than available funds, decisions and scenarios for maintaining 
infrastructural systems, such as the ground transportation network, must be 
based on a life-cycle cost (LCC) analysis (Frangopol, 1998, Frangopol et al., 
2001, Kong and Frangopol, 2004).  The goal of any such analysis is to cost-
effectively allocate resources such that condition, safety, and performance are 
optimized for individual structures as well as the network within budgetary 
constraints.  Computationally, this requires (a) reliable modeling of loadings, 
including extreme loads, and continuous deterioration processes and their 
effects on structural capacity, (b) accurate prediction of structural safety and 
performance evolution, (c) good estimation of costs of interventions such as 
maintenance, repair, and replacement over the specified time horizon, and (d) 
generations of solutions that balance life-cycle costs and lifetime structural 
performance in an optimum way (Frangopol and Liu, 2006). 

The general form of the expected life-cycle cost can be calculated as 
(Frangopol et al. 1998) 
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FREPINSPMTET CCCCCC ++++=        (2.1) 
 

where CET = expected total cost, CT = initial design/construction cost, CPM 
= expected cost of routine maintenance, CINS = expect cost of performing 
inspections, CREP = expected cost of repairs and CF = expected cost of failure.  
Within this framework, all future costs are converted to their net present value 
using  

 

nr
FVNPV

)1( +
=

           (2.2) 
 

where NPV is the net present value, FV is the future value, r is the discount rate, 
and n is the year in which payment occurs.  Traditional structural design 
typically focuses only on the initial cost of a structure.  If instead life-cycle 
concepts are utilized in the design process (also referred to as durability-based 
design or design with the inclusion of warranty periods), an optimal design 
solution can be determined as shown in Figure 2.5. 
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Figure 2.5.  The Optimum design solution based on life-cycle cost minimization 

(adopted from Frangopol and Liu, 2005) 
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Figure 2.5 depicts the relationship between the initial cost, the failure cost, 
and additional costs (including maintenance, repair, and operational costs, 
among others).  At the extreme right of this figure, a high initial cost 
(overdesign) results in a lower failure cost (lower probability of failure) and 
lower required additional costs.  In contrast, the left side of this figure shows 
that the lowest initial cost (minimum safe design) is paired with higher failure 
and higher additional costs.  The optimal solution locates the lowest total life-
cycle cost. 
 
2.2.2 Bridge Management Systems 

Most countries have developed and employ bridge management systems 
(BMS) to optimally maintain acceptable levels of performance across 
deteriorating bridges.  It is important to note that separate, but related, programs 
exist between different levels of government (national, state, local) and that in 
some cases certain highway networks are privatized and for profit.  The 
historical development and evolution of BMS across different countries and 
levels of responsibility share a very similar background.  Generally, bridge 
inspections began in the 1960s and 1970s.  This collection of information 
created databases leading to the task of managing deficient structures.  In the 
1980s and 1990s, the adoption of semi-probabilistic design methods (e.g. 
LRFD) and the increase of the permissible weight allowances of highway trucks 
amplified the amount of deficient or obsolete structures.  A larger than feasible 
amount of required repair and rehabilitation efforts led to focused research into 
bridge management systems themselves. 

Currently, most countries have formalized bridge inspection programs.  A 
report from international technology exchange program of the Federal Highway 
Administration (FHWA, 2005), documents differences in bridge preservation 
and maintenance programs across North America, Europe, and South Africa.  
This document (and others) serve as an excellent resource and are available 
online at www.international.fhwa.dot.gov.  In this particular study, attention is 
given to how different countries pay for highway upkeep, what management 
systems and databases are employed, how condition ratings and defects are 
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reported, what types of maintenance actions are conducted, which performance 
indicators and deterioration models are used, what types of inspections are 
required and at what frequency, which inspector training programs are utilized, 
and how permit loads are obtained for abnormal truck weights.  Almost 
exclusively, bridge management programs are based on visual inspections.  In 
special cases, non-destructive evaluation (NDE) tests are performed and 
although relatively few, there is a growing number of monitoring applications.  
However, such tests or uses of SHM are generally on an ad-hoc basis to target a 
specific fault and are not integrated into the overall maintenance and 
management hierarchy. 

Despite differences between countries, levels of authority, or ownership 
classifications, most BMS or organized into modules that perform the functions 
depicted in Figure 2.6 which are described in the following sections.  
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Figure 2.6.  Main modules / functions of a bridge management system. 
 

2.2.2.1 Inspection Methods and Database Management  
The Inventory/Database module is used to store historical data by member 

and structure.  The collection of information (via inspection) varies 
considerably across countries to include what type of information is gathered, at 
what frequency, by what authority, and with what level of certification.  Table 
2.1 highlights some of the differences.  The source for Table 2.1 is the 
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previously mentioned FHWA international technology exchange program report 
(FHWA, 2005).  Detailed information for the U.S. National Bridge Inspection 
Standards (NBIS) is available at the FHWA website online at 
http://www.fhwa.dot.gov/bridge/nbis.htm.  Notably, these references provide 
information on the country specific manuals, regulations, and procedures for 
bridge inspections.  Also of interest, these references define what constitutes a 
bridge, what types of bridges require inspection based on the type of traffic they 
carry and who owns the bridges, and how inspections are to be carried out based 
on the type of structure, amount of traffic, bridge importance, failure mode, and 
other factors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Country Inspection Interval Inspector
Daily Road Patrol
Semiannual Road Patrol
Principal 6 years Road Directorate trained inspector
Routine Frequent Road Maintenance Crew
Annual Local agencies
IQOA Condition 
Evaluation 3 years Local agency certified inspectors

Detailed 3 to 9 years
(6 on average) National certified inspector

General 1 year General knowledge of bridges
Major 5 years Civil engineering degree and general knowledge of bridges
General 2 years Training and quality control by engineering consultants
Principal 6 years Training and quality control by engineering consultants
Routine 2 years Team leader and certified inspection personnel
Underwater 5 years Team leader and certified inspection personnel
Fracture critical member 2 years Team leader and certified inspection personnel
Damage, in depth, special as required Team leader and certified inspection personnel

United 
Kingdom

Norway

France

United 
States

Table 2.1. Selected bridge inspection procedure data (Source: FHWA-PL-04-007)

Denmark

 

Although there are differences between the inspection types, intervals, and 
personnel carrying out the inspections in Table 2.1, all programs generally 
follow the general intent of the U.K. defined inspection types detailed as 
follows (BD63/94, BA63,94): 
 
Superficial Inspection:  Cursory check for obvious deficiencies such as 
clogged drainage, impact damage, flood damage, or anything out of the 
ordinary. 
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General Inspection: Checklist driven visual inspection from ground or deck 
level to record condition results.  Binoculars may be required. 
Principal Inspection:  Checklist driven, close examination (touching distance) 
of all inspectable parts of the structure.  Limited field testing (e.g. half cell 
potential, cover and carbonation) may be required. 
Special Inspection:   Examination of a particular area or defect causing 
concern.  It is usually carried out to investigate a specific problem identified 
during other inspections or to assess the effectiveness of a repair. 
 
2.2.2.2 Structural Assessment, Deterioration Modelling and 
Performance Prediction   
Structural assessment is the defining difference between various bridge 
management systems to include the development of new approaches.  The 
distinguishing characteristic that separates methods is the performance metric 
utilized to assess structures and to predict future performance.  It is highlighted 
that Figure 2.4 shows only performance on the ordinate axis.  Several examples 
of performance metrics adopted by different countries are provided here to note 
differences.  Sweden uses a lack of capital value (LCV) as a fraction of bridge 
replacement cost and an exponential deterioration model.  South Africa 
computes a bridge condition index (BCI) and employs a linear deterioration 
model.  Finland uses two performance indicators: KTI, a repair index based on 
defect severity and average daily traffic and UTI, a rehabilitation index based 
on functional deficiencies that can indicate a need for improvement rather than 
repair.   

The most common performance metric in practice for structural assessment 
is the condition state or condition index.  A condition state is a somewhat 
subjective evaluation from trained inspector as to the status of a bridge or that of 
its components based off a visual inspection using a set of established 
guidelines.  As an example of how condition states are assigned, Table 2.2 
details the criteria for an open steel girder using Pontis guidelines adopted by 
the Colorado Department of Transportation (CDOT, 1998).  Pontis is currently 
the most widely adapted bridge management system in the United States. 
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Condition 
Rating Description

1 No evidence of active corrosion. Paint system is functioning as intended to
protect the metal surface.

2
Little or no active corrosion. Surface or freckled rust has formed or is
forming. Paint system may be chalking, peeling, curling or showing other
early evidence of paint system distress but there is no exposure of metal.

3
Surface or freckled rust is prevalent. The paint system is no longer effective.
There may be exposed metal but there is no active corrosion which is causing
loss of section.

4
The paint system has failed. Surface pitting may be present but any section
loss due to active corrosion does no yet warrant structural analysis of either
the element or the bridge.

5
Corrosion has caused section loss and is sufficient to warrant structural
analysis to ascertain the impact on the ultimate strength and/or serviceablility
of either the element or the bridge.

Table 2.2.  Colorado DOT PONTIS condition ratings for steel painted girders 
                   (according to Neves et al., 2006a) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Once condition is assessed, a transition probability relates the current state 
with a maintenance action to a future state using a Markovian process. The 
Markov property indicates that the probability of deteriorating to another state 
depends only on the last condition and action but not on the history of the 
process. The time of transition from one state to another may follow specified 
probability distributions. For these reasons, condition-based Markov model is 
flexible to be adapted to visual inspection data.  However, this approach is not 
able to capture the propagation of uncertainties during the entire service life and 
accuracy is lost due to a limited number of discrete condition states (Frangopol 
and Liu, 2007).  For condition-state models, the performance profiles are 
decreasing step functions over time.  Both of the predominant bridge 
management systems in the United States, Pontis (Thompson et al, 1998) and 
BRIDGIT (Hawk and Small, 1998) use such an approach.  Although there is 
concern regarding the loss of accuracy due to the use of a Markov model, the 
primary concerns of condition state models are that visual appearance may not 
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correlate to structural safety and that visual inspections are prone to human 
subjectivity and/or error.   

Safety-based or reliability-based assessment of civil infrastructure began in 
the 1970s and was initially applied to the assessment of offshore structures e.g. 
Benjamin and Cornell (1970), Ang and Tang (1975), Thoft-Christensen and 
Baker (1982), etc. (Rafiq, 2005).  The first major research on the reliability 
based management of bridges was supported by the European Union (Thoft-
Christensen, 1993, Thoft-Christensen and Hansen, 1993) and since this time it 
has been an active area of research.  Amongst the extensive list of contributors 
in this field some widely cited references include Cesare et al. (1993), Das 
(1994), Micic et al. (1995), Corotis (1996), Das (1996), Thoft.Christensen et al. 
(1996), Frangopol et al. (1997b), Estes (1997), Val et al. (1997 and 1998), Das 
(1998b), Thoft-Christensen (1998), Enright and Frangopol (1999), Frangopol 
and das (1999), Fragopol et al. (2000), Val et al. (2000), Sterrit et al. (2001), 
Chryssanthopoulos and Sterrit (2002), Kong and Frangopol (2003), Neves and 
Frangopol (2004), Estes and Frangopol (2005a and 2005b), Rafiq (2005), and 
Neves et al. (2006a, 2006b, 2006c).  The development and migration toward 
models that instead use safety (reliability-based methods) as the primary 
performance metric are further detailed in Chapter 3. 

 
2.2.2.3 Maintenance planning and optimization   

Most bridge management systems employ the life-cycle concepts outlined in 
Section 2.2.1 to develop maintenance and rehabilitation alternatives.  However, 
due to budgetary constraints or the need to analyze a period shorter than the life 
of a structure, non-optimal strategies may be adopted.  In order to develop 
management alternatives, deterioration rates, types of maintenance, and the 
effect of maintenance on performance must be modelled.  Deterioration 
initiation times and deterioration rates are in particular very difficult to model 
and predict.  Estes (1997) provides a method and examples for steel members 
based upon section loss.  Rafiq (2005) provides an approach using widely 
accepted deterioration models updated via SHM using Bayesian updating 
techniques.   
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Conceptually, Figure 2.7 shows one way of relating performance, 
deterioration, maintenance, and time.  Here, it is assumed that deterioration or 
damage does not begin immediately.  Preventive maintenance may result in an 
increase in performance and a decrease in the rate of deterioration.  Figure 2.7 
models both of these effects.  Essential maintenance can restore performance to 
its initial level or any lesser amount depending upon what type of maintenance 
is conducted (repair vs. replacement) and what is being modelled (member or 
system).  Not modeled in Figure 2.7 are multiple instances of preventive 
maintenance or essential maintenance and the time associated with each.     
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Figure 2.7.  Effects of preventive and essential maintenance (adapted from 

Frangopol, 1997). 
 
Once the effects of deterioration and maintenance on performance are 

modeled, simulation methods can be utilized to determine the management 
strategy with the lowest life-cycle cost (Estes and Frangopol, 1999).  In reality, 
multiple and conflicting objectives may need to be considered simultaneously in 
order to obtain a well balanced solution (e.g. condition, safety, cost, risk 
tolerance, network performance, etc.) (Neves and Frangopol, 2006c).  As such, 
the maintenance planning can be formulated as a multiobjective optimization 
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problem in order to optimize life-cycle structural performance, based on 
simulated performance profiles and life-cycle costs of different origins. This 
leads to a group of alternative solutions that exhibit the optimized tradeoffs 
among conflicting objectives as shown in Figure 2.8 (Frangopol and Liu, 2007).  
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Figure 2.8.  Tradeoff solutions between conflicting objectives (Frangopol and Liu, 
2006). 

 
2.2.3 Reliability and Structural Reliability Concepts 

 
2.2.3.1 Uncertainty  

Uncertainty  is an inherent and unavoidable in structural design and 
assessment.  Structural models and their idealizations, deterioration 
mechanisms, material resistances, geometries, equipment/sensor error, and 
especially loads are highly uncertain.  For these reasons, a life-cycle 
performance profile can be considered as shown in Figure 2.9 where a degree of 
uncertainty is associated with each time and each action represented by the 
letters A through G.  At each point, probability density distributions are utilized 
to characterize the uncertainty associated with the ability to accurately 
characterize performance.  Most important to the scheduling of future 
maintenance activities is the initial performance assessment (A), the rate of 
deterioration (C), and the time of initiation for deterioration (B) (Kong and 
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Frangopol, 2005).  Because these parameters are random, the optimal number 
and timing of preventive and corrective actions is also uncertain (E and G).  
Likewise, the level of performance after any preventive or corrective action is 
also uncertain (D and F).  In addition, it is noted that as the model predicts 
further into the future, the uncertainty associated with prediction of all 
parameters increases.  Lastly, it is noted that Figure 2.9 is a general or 
conceptual performance profile.  It is not stated how the level of performance is 
obtained (calculated, observed, or based on belief) and it is not stated if the 
profile represents a member, system, or structure.   
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Figure 2.9.  A life-cycle performance profile under uncertainty 
 
Uncertainty can be considered in two broad categories, aleatory and 

epistemic as described by Ang and Tang (2007).  Aleatory uncertainty describes 
the inherent randomness of phenomenon being observed and cannot be reduced. 
Natural variations in temperature are an example of this type of uncertainty. 
Epistemic uncertainty describes the error associated with imperfect models of 
reality due to insufficient or inaccurate knowledge (Ang and Tang, 2007).  Error 
associated with predicting stresses in a structural member through use of an 
analytical model is an example of this type of uncertainty, as material 
properties, geometry, and loads are never deterministic.  Melchers (1999) 
further breaks the sources of uncertainty in the following categories: 
phenomenological, decision, modelling, prediction, physical, statistical, and 

31 



Thomas B. Messervey Integration of SHM into the LCM of Civil Infrastructure 
 
 
uncertainties due to human factors.  It is noted that the uncertainties related to 
human factors (e.g. errors in design or construction) are often unaccounted for 
in analytical models but are often the primary drivers of infrastructure failure.   

It is necessary to quantify and evaluate the significance of uncertainty in 
order to provide an adequate level of safety.  Historically, this has been 
accomplished through the use of a factor of safety.  Usually based upon past 
experience and expert opinion, a factor of safety is intended to account for all 
sources of uncertainty.  Although simple to use, it is limited in its ability to 
provide consistent levels of safety across a variety of structures and may result 
in significant over/under design. To address these limitations, the theory of 
structural reliability was developed to provide a rational approach to account for 
the uncertainties encountered in engineering applications.  Excellent references 
include Ang and Tang (1975, 1984, and 2007) and Melchers (1999).  

 
2.2.3.2 Reliability and Structural Reliability  

Reliability is a mathematical formulation of the probability of failure.  In its 
most basic sense, reliability can be defined as  

 
Reliability = 1 - pf             (2.3) 

 
where pf represents the probability of failure and can be defined descriptively as 
(Leemis, 1999):  
 
The reliability of an item is the probability that it will adequately perform its 
specified purpose for a specified period of time under specified environmental 
conditions. 
 
This general (or classical) definition of reliability is typically associated with 
the lifetime of organisms, products, machines, parts, components, or systems.  
In this definition, careful attention must be given to the specified purpose, the 
specified period of time, and the consistency (e.g. constant) of the 
environmental conditions.  The units associated with the resulting probability of 
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failure are numbers of failures per the time interval considered under the 
environmental conditions experienced.  The lifetime characteristics of an item 
are usually obtained through the statistical observation of the performance of a 
large number of items under the conditions of interest.  A further (and more 
detailed) discussion of lifetime characteristics, lifetime functions, how they 
relate to structural reliability and monitoring is provided in Chapter 6. 

Structural reliability is a subset or close relative of classical reliability.  They 
are closely related but there are also several sharp distinctions.  The need for 
structural reliability (distinct from classical reliability) arises from two factors.  
First, the long lifetimes of civil infrastructure, the randomness and infrequency 
of extreme loads of interest, and the dynamic nature (constantly changing) of 
environmental conditions make it impossible to statistically observe all structure 
types of interest in all conditions of interest (to define lifetime lifetime 
characteristics).  Second, structural applications are most often concerned with 
measures of performance that may be impossible to observe.  These measures of 
performance, or requirements, are termed limit states and resulting reliability 
calculations are concerned with the violation of these limit states.  Typical limit 
states for civil infrastructure are given in Table 2.2 (adapted from Melchers, 
1999).   

 

Limit state Description Examples
Ultimate (safety) Collapse, partial collapse, 

impending collapse
Tipping, sliding, plastic mechanism, 
fracture, corrosion, fatigue, etc.

Damage Damage Excessive cracking, presence of 
cloride in concrete, loss of prestress, 
permanent deformation, etc.

Serviceability Disruption of normal use Excessive deflections, vibration, local 
damage, poor condition

Table 2.3.  Typical limit states for civil infrastructure (adapted from Melchers, 1999)

 
 
As such, a structural reliability analysis begins with a limit state equation 

(performance function) or series of equations that govern the performance of a 
structure.  In general and with respect to safety, a structure is considered safe if 
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its capacity R (strength, resistance, fatigue life, etc.) exceeds the load demand L 
(load, moment, stress ranges, fatigue cycles, etc) such that   

 

 1or                0or                >>−>
L
RLRLR         (2.4) 

 
An evaluation of these expressions provides a measure of the likelihood that the 
demand will exceed a structure capacity to resist that demand.  The capacity of 
a structure, the expected loads, the uncertainties associated with each, and the 
effects of the loads are represented by random variables.  Random variables can 
take on different values and the likelihood of any particular value is described 
by the probability density function.  The most important metrics used in 
describing a random variable are its mean, median, mode values and its standard 
deviation which provide a measure of dispersion.   
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Figure 2.10  Graphical representation of the structural reliability concept. 
 
Structural reliability is utilized to conduct a probabilistic assessment of the 

performance function g = R − L, where R and L are the resistance and load 
effect, respectively. Provided that the capacity, R, and load effect, L, are random 
and can be quantified, the probability of safe performance, ps, can be expressed 
as 
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where fR(r) and fL(l) are the probability density functions (PDFs) of R and L are 
shown (for one possible example) in Figure 2.10, and fR,L(r,l) is their joint PDF.  
If R and L are independent, fR,L(r,l) = fR(r)fL(l) such that Eq.2.5 becomes  
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Most often, the capacity R and demand L are themselves function of many other 
random variables.  In such cases, a limit state function g(X)=0, describes the 
performance of the system in terms of the vector of basic random variables, X, 
and defines the failure surface, which separates a survival region from a failure 
region.  Formulation of the probability of safe performance ps then becomes 
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which represents the volume integral of fX(x) over the safe region g(X) > 0.   
 

2.2.3.3 Solving for the Reliability Index  
The solution of the integrals found in Eq. 2.5 and Eq. 2.7 can quickly 

become too complex to solve.  To address this problem, “Level II” methods 
FORM (First Order Reliability Methods) and SORM (Second Order Reliability 
Methods) provide an iterative approach to estimating the failure probability by 
locating the shortest distance to a multi-dimensional plane tangent to the failure 
surface of the limit state equation in the standard normal space.  In contrast, 
Monte Carlo Simulations can also be utilized to provide estimates of the 
probability of failure.  A Monte Carlo approach simulates a large number of 
“experiments” by randomly choosing instances of the involved random 
variables.  The failure probability can then be estimated by comparing the 
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number of trials that produced a failure condition to the total number of trials 
conducted.  Until recently, optimization schemes and variance reduction 
techniques were extremely important in the conduct of Monte Carlo simulations 
due to the amount of simulations required and corresponding processing times.  
Although these concerns have been mitigated through improvements in 
technology (processing speeds), they will likely still be required for the solution 
of complex structures/systems.  Further details on reliability and Monte Carlo 
simulation can be found in Madsen et al. (1986) or Melchers (1999).  

Equations 2.5-2.7 calculate the reliability of a single component or failure 
mode.  In reality, structures are composed of multiple members and may 
experience multiple failure modes.  By investigating the interrelationships 
between members and failure modes (system analysis), several advantages can 
be obtained.  These advantages include that the reliability of systems are often 
higher than individual components, recognizing that some repairs are more 
important than others is possible, and that it may be possible to recognized that 
although an individual component is safe, the structure as a whole may be 
unsafe (Estes and Frangopol, 2005a).  Structural members can be considered in 
series, parallel, or a combination of each as shown in Figure 2.11.    
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Figure 2.11.  Members arranged in series, parallel, and the reduction of a series-

parallel system (Adapted from Estes and Frangopol, 2005a). 
 
For members arranged in series, the failure of a single a single element will lead 
to the collapse of the entire structure.  For a structure of z elements, the 
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probability of failure of the system pf, series can be written as the probability of a 
union of events 
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where ga(X) is the performance function of member a.  For members arranged 
in parallel, the failure of all elements is required for the collapse of the entire 
structure.  For such a system, the probability of failure of the system can be 
written as the probability of an intersection of events 
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A general system is one consisting of combinations of series and parallel 
systems.  Considering a series system consisting of y parallel systems where 
each parallel system a has za components.  The probability of failure pf, series-

parallel is given by 
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The solution to Equation 2.10 can become very complex.  Generally, FORM 
and SORM can be utilized after where the reliability of a complex system is 
solved by sequentially breaking the system into simpler equivalent subsystems 
as shown in Figure 2.11 (Estes and Frangopol, 2005a).  Additionally, all system 
reliability calculations need to account for the correlation between members and 
failure modes (Cornell, 1967).   

For the practicing engineer, the theoretical aspects of structural reliability 
may be embedded in software applications utilized to solve a particular 
problem.  Commercially available software for time-invariant reliability 
analysis include STRUREL, CALREL, PROBAN, and RELSYS.  References 
for each of these programs are provided.   
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Typically, the probability of safe performance is a number very close to and 
less than 1.0.  For civil engineering applications where the probability of failure 
is very small, it is usually reported in terms of the reliability index β  to make 
analysis results more simple to express.  In the special case where R and L are 
independent and normally distributed, the reliability index can be equated to the 
probability of failure using the standard normal variate as )( β−Φ=fp  as 
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−
=           (2.11) 

 

where μR and μL are the mean values of the resistance and load effect 
respectively, and σR and σL are the standard deviations.  Mathematically, this 
index provides a measure of the number of standard deviations that the margin 
of safety (R-L) falls on the safe side.  Similar calculations can also be conducted 
for log-normally distributed random variables.  For this reason, Eq. 2.11 is 
perhaps the most common starting point for estimating the reliability index as 
many random variables follow or can be approximated as normal or log-
normally distributed.  Common values for β range from 2 to 8 in civil 
engineering applications.  Values between 2 and 4 are typically specified for 
structural assessment and code calibration efforts.  Table 2.4 lists the reliability 
index and its relationship to the probability of failure for the range of 0 to 5.   
 
 
 

4 0.0000316
5 0.000000286

2 0.02275
3 0.00135

0 0.5000
1 0.1587

Table 2.4  Relationship between the Reliability Index and the 
                   Probability of Failure

Reliability Index (β ) Probability of Failure (p f )
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2.1.2.4 Time Dependent Reliability  
The previous section detailed the calculation of structural reliability at a 

point in time.  Such calculations assume that the resistance R and load L remain 
constant over the period of interest.  These calculations are appropriate for the 
assessment of a structure against a specified loading condition (e.g. the 75 year 
design load).  

Although assessment is a critical step in the management of civil 
infrastructure, predicting future performance is what allows the efficient 
scheduling of inspections, maintenance, repairs, and replacements.  Such 
predictions are the basis of life-cycle management methods, durability-based 
design approaches, and whole-life cost approaches (nearly equivalent 
terminology).  In general, the capacity (resistance) of a structure decreases over 
time as the structure deteriorates and the load demand increases as shown in 
Figure 2.12.   
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Figure 2.12.  Trace of the structural resistance R and load effect L in a time 

dependent reliability analysis (adapted from Melchers, 1999). 
 

The increase in the load effect is a function of several considerations.  First, the 
mean load being placed on highway structures has increased at a fairly 
consistent and predictable rate over the last several decades (Gindy and Nassify, 
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2006).  Second, all live loads are a function of time or the amount of loading 
events experienced (e.g. average daily truck volume).  Statistically, as a 
distribution is repeatedly sampled, the probability of encountering a large value 
at the upper tail of the distribution increases.  This load effect is can be modeled 
by the statistics of extreme values and is treated in detail in Chapter 5.  The 
decrease in structural resistance R is due to deterioration effects over time.  The 
deterioration of various materials is a widely researched topic.  Enright et al. 
(1996) compiled a survey of deterioration models for concrete structures.  
Deterioration of concrete structures is typically divided into two categories, 
chemical and physical deterioration mechanisms.  Chemical deterioration 
includes chloride attack, carbonation, acid attack, and alkali-aggregate reaction 
while physical deterioration involves freeze-thaw, leaching, erosion, and 
cracking (Rafiq, 2005).  For transportation networks, chloride penetration of the 
concrete and subsequent corrosion of the reinforcing steel is the primary cause 
of capacity degradation.  For steel structures, corrosion models predict where 
and when corrosion will result in section loss of the steel shape.  Albrecht and 
Naeemi (1984) first developed a model for steel girders that was later improved 
by Thoft-Christensen et al. (1996) to include values for random variables.  The 
vulnerability of steel structures to corrosion is largely determined by 
regional/environmental conditions, proximity of a specific member to exposure, 
and the presence of aggressive agents.  A treatment of such conditions for a 
composite steel girder concrete deck bridge structure can be found in Estes 
(1997).  For wood, its durability can be difficult to predict and depends largely 
on environmental conditions, specific wood type, and preservation efforts.  
Generally, the performance of wood structures decreases over time due to 
natural weathering, decay, biological attack (fungus or insects), or chemical 
attack and service life can range from a short period up to 500 years (Bijen, 
2003).  A further development of performance-based time-dependent reliability 
profiles is the topic of Chapter 6. 
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2.2.4 Risk, Risk-Based Decision Making, and Updating  
Risk is a complex topic as any determination of an acceptable level of safety 

is somewhat subjective.  Although the reliability index provides a measure to 
compare different designs and to calibrate against existing safe designs, it does 
not yet account for the consideration of societal norms, preferences, and risk 
tolerances (Estes and Frangopol, 2005b).  For example, societal expectations are 
likely to be much less accepting of fatalities resulting from the collapse of a 
bridge than those associated with increasing the speed limit on a public 
motorway.  Even when faced with statistical evidence to the contrary, such as 
the hazard associated with living close to a nuclear facility and that of driving 
after a glass of wine, people’s decisions are often driven by other factors.  
Corotis (2003a, b) develops this idea to suggest that people’s perception of risk 
depends upon whether the risk is objective or subjective, aleatoric or epistemic, 
familiar or unfamiliar, and voluntary or involuntary.  Because decisions and 
preferences are based upon these perceptions of risk, such metrics should be 
reflected in future codes and a rational method is needed to objectively assess 
and quantify the benefit of resources allocated.  To this end, Rackwitz (2004) 
introduces the concept of a Life Quality Index to monetize the amount of money 
society is able and willing to pay towards risk reduction by providing a 
measurement of the longevity, quality, and value of human life as it is balanced 
against competing resources. 

Within the field of engineering, risk typically has two meanings.  In 
structural engineering, risk often refers to the probability of failure from all 
possible causes.  When used herein (this thesis), this meaning is simply termed 
the probability of failure pf or hazard when conditioned on past safe 
performance.  The second interpretation of risk refers to the magnitude of 
failure in monetary terms and is typically associated with insurance or a 
notional cost associated with the failed state of a structure.  This meaning for 
risk is the intended meaning herein and is used to quantify the utility of 
monitoring solutions and to construct complete life-cycle costs.   
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The most basic and common expression for evaluating the risk R (also 
termed the expected cost of failure CF) is the product of the likelihood of an 
event and the associated consequences given the event occurs as 
 

Risk = R = CF = pf C                             (2.12) 
 
where pf represents the probability of failure and C the consequence of failure in 
monetary terms.  The notation of risk R is typically utilized in risk-based 
approaches and the cost of failure CF is typically utilized in LCM methods.  The 
terms are equivalent.  It is noted that the probability of failure can come from 
multiple sources: belief, statistical observation, updated data, or analytical 
methods (e.g. reliability calculations).  It is also noted that the consequence of 
failure can vary dramatically depending upon what costs are considered.  Lastly, 
it is important to observe that this calculation provides a point-in-time snapshot 
of risk specific to the conditions associated with the calculation of pf.  These 
three points are further discussed in Chapter 3, Chapter 4, and Chapter 6.  
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Figure 2.13: Decision/Event tree for prior and posterior analysis (adopted from 
Benjamin and Cornell, 1970) 
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Risk-based decision making (also commonly referred to as Bayesian 
statistical decision making) approaches provide a probabilistic estimate of the 
total expected cost associated with different alternatives at a point in time 
(Stewart and Melchers, 1997).  A decision tree as shown in Figure 2.13 can be 
utilized to organize the calculations.  The branches can represent actions or 
hazards.  The summation of the probabilities of the branches extending from 
any node must be equal to one.  Decisions are typically made by comparing the 
total expected cost (or utility U) of each of the branches to determine the least 
cost solution.  The states F(θ) represent the probabilities associated with each 
action a (e.g. the probability of failure and the probability of safe performance 
after a maintenance action is taken).  It is often feasible, but not necessarily 
economical, to obtain more information about the states before choosing an 
action from various alternatives (Rafiq, 2005).  Based upon what information is 
available/considered, the decision analysis is divided into three main categories: 

 

• Prior Analysis: Uses given/available information 
• Posterior Analysis: Uses given new information 
• Pre-Posterior Analysis: Uses new unknown (estimated) information   

 

The pre-posterior analysis is often conducted to estimate whether or not the 
collection of additional information is economical. 

Depending upon the quality of information (available, new, or estimated), 
either may be appropriate for use in the analysis.  Most often, it is desirable to 
combine existing and new information in a rational manner.  Such an approach 
is provided by Bayes Theorem which in its most basic form is given in Equation 
2.13.  This form and other forms (e.g. for different distribution, discrete data, 
and continuous data) can be found in Ang and Tang (2007) 
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where  
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P(A) = the probability of occurrence of event A 
P(Ei) = the probability of occurrence of event Ei 
P(A|Ei) = the probability of occurrence of A given Ei has taken place 
P(Ei|A) = the probability of occurrence of Ei given A has taken place 
and the events Ei are mutually exclusive and collectively exhaustive. 
 

The left side of Figure 2.14 outlines the procedural steps utilized in risk-
based decision making (RBD) and the right side outlines the general steps 
utilized in the life-cycle management methodology (LCM) (e.g. Figure 2.7, 2.8, 
etc.).  It is important to note that RBD and LCM are two similar but separate 
methods.  In researching the literature or in applying or developing either 
approach, one must take care to correctly and consistently treat the assumptions 
and limitations of each approach.  Because the approaches are similar, 
terminology associated with each is often used interchangeably.  Moreover, 
LCM can occur within RBD and RBD can occur within LCM.  Although the 
approaches are complimentary, RBD typically focuses on risk mitigation 
whereas LCM typically focuses on maintenance and repair actions.  
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Figure 2.14 Risk Based and Life Cycle Management decision making frameworks 
(adopted from Frangopol and Messervey, 2007b). 
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Both RBD and LCM use a probabilistic formulation of a problem to deal 
with uncertainty.  Once modeled, a system is assessed and consequences or 
benefits of different possible decisions can be evaluated.  Once a particular 
decision is chosen, the model can then be updated and the system reevaluated in 
terms of consequence, safety, performance, cost, or condition at a future time 
interval.  Both approaches are complimentary in nature as each uses a subset of 
the other within its framework.  For structure management systems, risk-based 
decision making typically utilizes a reliability analysis to obtain the probability 
of failure for each outcome within the risk assessment.  For reliability life-cycle 
cost analysis, risk concepts are typically utilized to identify and consider the 
appropriate life-cycle costs associated with the cost of failure and exposure to 
different hazards (Ang & De Leon, 2005). 

It should also be noted that both approaches provide a natural and flexible 
decision making methodology in the presence of uncertainty.  Using either 
provides the capability to assess multiple courses of action, new information 
can be introduced into the models, and managers have the ability to include 
their preferences or experience.  As such, one approach need not replace or 
supersede the other.  Instead, the approaches can be utilized in parallel or the 
strengths of each can be leveraged in a combined approach. 

 
2.2.5 Structural Health Monitoring 

To objectively evaluate the condition of existing structures and to design 
better structural systems, researchers are exploring novel sensing technologies 
and analytical methods to identify the onset of damage (Liu and Tomizuka, 
2003).  Called structural health monitoring (SHM), this new paradigm offers an 
automated method for tracking the health of a structure by combining damage 
detection algorithms with structural monitoring systems (Lynch and Loh, 2005).  
Inspired by the human central nervous system which has the capability to sense 
and detect injury, the SHM community has adopted the following four damage 
assessment levels for the development of damage detection algorithms (LANL, 
2003).  The are: 
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• Detection: Is damage present? 
• Localization: Where is the damage located? 
• Diagnosis: How severe is the damage? 
• Prognosis: What is the remaining safe lifetime? 

 
To date, SHM has been mostly performed at a global level, with a limited 

number of sensors distributed over a relatively large area of a structure. Such 
sensing systems, with gross spatial resolution, can only detect major damage 
conditions. The experiences of the last two or three decades have shown that 
global vibration characteristics of a structure are not sensitive to all but the most 
severe damage, which is inherently a local phenomenon (Glaser et al., 2007).  
However, recent progress in micro electro-mechanical systems (MEMS) and the 
introduction of comprehensive miniature sensing platforms that co-locate 
sensing or actuation, signal processing, computational power, and wireless 
communication are enabling the creation of dense sensor networks.  These 
platforms are called “Motes” or “smart” sensors (Lynch and Loh, 2006).  

SHM damage detection approaches can be categorized into the following 
three groupings which are shortened and paraphrased below from Glaser et al. 
(2007). 
 
Physics-based damage detection:  Such methods attempt to identify 
deterioration by solving an inverse problem through the construction of 
analytical models (e.g. finite element) or Green’s functions.  The goal of such 
approaches is to infer the physical characteristics of a structural system, which 
cannot be measured directly, through the correlation of mathematical models 
and experimental input/response data.  A critical issue for these approaches is 
the uncertainty associated with measured data, a lack of sensitivity to local or 
small levels of damage, and the inability to characterize sensor bias errors.  
Several notable studies in this area include Farrar et al. (1994), Bucher et al. 
(2003), Beck and Katafygiotis (1998), and Sohn and Law (1997).   
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Data-driven damage detection:  Signal-based unsupervised learning techniques 
can be utilized to avoid direct dependence on analytical models.  Such 
techniques include novelty/outlier analysis (Ruotolo and Surace, 1997), 
statistical process control charts (Sohn, et al., 2000), auto-associative neural 
networks (Chan, et al., 1999), and simple hypothesis testing (Lapin, 1990).  
These methods are generally limited to level one and two damage assessment 
(detection and localization).  Often, numerical simulations of an analytical 
model are used to augment scarce or lacking data associated with an undamaged 
structure.  Signal-based supervised learning techniques include neural networks 
(Masri, et al. 2000), response surface analysis (Inada, et al. 1999, Casciati, 
2004), Fisher’s discriminent (Garcia and Stubbs 1997), nonlinear auto-
regressive moving-average (NARMA) models (Loh and Huang 1999), genetic 
algorithms (Ruotolo and Surace 1997), and support vector machines (Worden 
and Lane 2001). 
 
Statistical models:  All SHM can be viewed as problems in statistical pattern 
recognition in which changes in data against a baseline indicate damage.  These 
approaches also benefit from complex and power consuming calculations 
associated with structural analysis or the transmission of large amounts of data.  
The largest challenge facing such methods is that it is often desirable to assess 
an in-service structure where no baseline data is available and building the 
database can take a considerable amount of time due to the need to compare like 
environmental conditions.  Notably, advances in memory capacity and lower 
power consumption is allowing the storage of the collected baseline data and 
comparison calculations to occur at the individual sensor location.  Promising 
work in this area includes Sohn et al. (2001), Nair and Kiremidjian (2007), and 
Kiremidjian et al. (2008).   
 

Currently, there is a gap between SHM and bridge inspection and 
management methods (Glaser et. al, 2007)  “Whereas SHM has focused 
primarily on damage detection, bridge managers want answers to serviceability 
and reliability issues: (a) has the load capacity or resistance of the structure 
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changed? (b) what is the probability of failure of individual structural members 
and the whole structure? (c) what preventative maintenance needs to be 
performed? and (d) what are the chances of catastrophic failure?”  Ultimately, 
the goal of SHM should be to facilitate rational decision-making regarding the 
safety and reliability of a structure, and proper actions to take when safety 
concerns are raised.  Is it also noteworthy that although SHM equipment mostly 
used on new long-span bridges, the majority of structures in need of repair and 
monitoring are aged smaller bridges. 
 

2.3 Aim and Scope 
 
2.3.1 Aim 

A first step in conducting a reliability-based analysis for the life-cycle 
management of bridge structures is to model the problem.  Failure modes, 
random variables, and deterioration models as well as cost and maintenance 
options must be selected and are subject to engineering judgment and debate.  A 
challenge preventing wider use and acceptance of reliability-based life-cycle 
management methods is that even after a bridge is modeled, slight variations in 
the input parameters can produce radically different results, thus decreasing the 
confidence and perceived value of the process (Estes 1997).  In literature, 
researchers developing life cycle management models often cite the need to 
improve their knowledge of the actual deterioration and failure mechanisms and 
load effects in the structure of interest.   

The use of Structural Health Monitoring (SHM) in civil infrastructure is 
increasing as sensors become smaller, more affordable, less power consuming, 
and wireless.  Although bridge managers and engineers may have access to a 
wealth of structural response data, more research is required on how to 
effectively manage, process, and utilize it.  In a review of lessons learned from 
structural health monitoring conducted on three in service bridges, it is 
highlighted that in some cases the goals of the academic community are 
different from the needs of bridge managers whose concerns are most likely 
upon bridge safety or unusual bridge behavior (Brownjohn et al. 2003).  
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Additionally, this review states that although detecting, locating, and 
quantifying damage may still be in the future of health monitoring, significant 
insight can be gained now into the actual structural behavior and loading 
conditions on a monitored structure.  Most commonly, this information is 
utilized to validate or improve finite element models. 

It is evident that both communities (Life-Cycle Management (LCM) and 
SHM)) stand to benefit from combining the strengths offered by each approach.  
Reliability-based life-cycle management offers bridge managers a practical 
predictive view of cost, safety, and condition, but in many regards lacks 
knowledge of actual structural performance.  Structural Health Monitoring 
techniques effectively capture structural behavior and demands on a structure, 
but are not as effective in translating this information into actionable data for 
bridge managers.  The goal of this thesis is to realize progress towards 
incorporating data obtained via structural health monitoring into the calculation 
of bridge reliability and life-cycle management.   

 
2.3.2 Scope 

This work does not aim to identify a specific damage detection method or 
technology that works for all structures.  Instead, the idea is to develop a general 
framework and process adaptable to any structure of interest that takes 
advantage of the best possible information obtainable.  This information could 
include theoretical and empirical models for deterioration, visual inspection 
data, and data obtained through structural health monitoring.  SHM provides the 
ability to capture actual load demand and actual structural responses.  
Additionally, technologies exist that can effectively monitor existing damages.  
This information can and should be utilized to update and calculate the 
reliability of structure.  The client of this work is the bridge manager, who likely 
has limited funds to maintain multiple structures.  Ultimately, this work will 
provide him or her with an additional tool to assess and optimize maintenance 
options for a single bridge or a network of bridges.  It is openly acknowledged 
that this work is a starting point. 
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Chapter 3 
 
 
 

EFFECT OF MONITORING ON THE 
RELIABILITY OF STRUCTURES 
 
 
 

Abstract 
 

This chapter was inspired by the invitation to contribute to a new book 
entitled “Monitoring technologies for bridge management: state of the art” 
edited by Professor Baidar Bakht and Professor Aftab Mufti.  The book is 
scheduled for publication in 2009.  The intent of the new book is summarized in 
a paragraph from its preface as follows: 

 
The use of SHM requires the interaction of several different disciplines, 

being for example civil engineering, electrical engineering and physics. There 
are a large number experts in each of the various disciplines. Similarly, 
specialist technical literature abounds in each area of expertise. When experts 
in different fields come together for an SHM project, the communication 
becomes difficult because each expert does not understand even the basics of 
the other’s field of expertise. This book has been written for the purpose of 
providing mainly bridge engineers most of the information about SHM of 
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bridges in one document. In chapters dealing with subjects not familiar to civil 
engineers, the language has been kept relatively simple so as not encumber the 
civil engineer reader with unfamiliar technical terms. 

 
The specific chapter contribution titled “Effect of monitoring on the reliability 
of structures” (Frangopol and Messervey, 2009) is not reproduced here, 
however, the main ideas, as well as others, are presented. 

3.1 Introduction 
The question of how monitoring affects the reliability of structures is 

intricate, timely, and well-posed.  On its surface, one could argue that 
monitoring has no effect at all.  For example, given two identical bridges, does 
the placement of a structural health monitoring (SHM) system on one of the 
bridges make that bridge any less likely to fail under anticipated loads?  No.  In 
itself, the mounting and use of a sensor do nothing to improve the performance 
or safety of an actual structure (in contrast with the addition of a stiffener or 
replacing a deteriorated member).  However, if one considers that structural 
design codes are calibrated against risk, the reduction of uncertainty through 
increased information obtained by SHM is of benefit if this data is captured and 
reflected in the codes through calibration updates over time.  In terms of bridge 
management, it is clear that the managers of a SHM enabled structure should be 
better postured to make decisions concerning the maintenance and future 
disposition of the bridge, provided the management system can incorporate 
probabilistic data and a mathematical linkage can be made between service 
loads (based on routine usage) and extreme loads (based on return periods).  
Given that the design and ensuing management of civil infrastructure will likely 
always take place in a resource constrained environment, the expected benefit of 
SHM must be balanced against its cost implying the use of a life-cycle cost 
analysis or durability-based design.  Although conceptually and financially 
correct, these methods have yet to become common practice in industry.   

As the question “What is the effect of monitoring on the reliability of 
structures?” is examined, one discovers that the question truly under 
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investigation is how does monitoring affect the way structures are designed, 
assessed, and managed?  Since these disciplines have and will continue to 
evolve over time, and because they are not yet standardized, any such 
discussion must be carefully framed and the correct context provided.  For 
example, the use of SHM data and associated mathematical techniques differ if 
one is referring to code calibration, structural system identification for a finite 
element analysis, or the updating of random variables in a structural reliability 
analysis.  Although the final objective is clear (optimally efficient structural 
designs with the ability to assess in-service conditions to predict future 
behavior), how to reach this endstate is not as clear and is currently in the 
process of being developed.  In general terms, one would expect to realize the 
relationships shown in Figure 3.1 in the design and employment of monitoring 
solutions.  As the use of monitoring is increased, the level of uncertainty is 
reduced.  In turn, this increases the reliability of the structure and decreases the 
life-cycle cost.  However, the realization of such relationships is contingent 
upon the use of methods and models appropriate for such calculations.  The goal 
of this chapter is to review such methods and investigate how monitoring can 
serve as a catalyst to develop the next set of design codes, assessment 
procedures, and management systems. 
 
 Monitoring Uncertainty Reliability CostMonitoring Uncertainty Reliability Cost 
 
 
Figure 3.1  Relationships in the use of SHM systems (the symbols ↑ and ↓ represent 

increase and decrease, respectively). 
 

3.2 Monitoring as a Catalyst to Improve Design 
 
3.2.1 Linking Monitoring and Design 

The extension of monitoring technologies into design codes and methods 
requires foresight and time for the field to mature.  Upon initial consideration, it 
may appear that there is no linkage as monitoring is best suited to probabilistic 
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methods (structural reliability) which are to date not generally used in design 
practice.  In fact, codes that incorporate the reliability index in assessment 
guidelines, such as the Canadian Highway Bridge Design Code, specifically 
state that the guidelines will not be utilized for design purposes (CHBDC, 
2006).  It is perhaps for these reasons that monitoring is associated almost 
exclusively with assessment applications and most frequently to troubleshoot a 
particular defect.  However, one must recall that assessment is a natural and 
inherent part of the design process and that studies of existing structures have 
resulted in the codes currently in use.  In terms of probabilistic methods, 
although the reliability index β is not currently used for design, this index is 
used to calibrate and recommend the appropriate load and resistance factors for 
design or evaluation specifications (Ghosn et al. 2003).  As such, any 
technology that improves assessment can also be utilized to benefit design if the 
information collected is utilized in future code revisions.  This is not a new 
process, but again a natural extension of what has already been occurring to 
ensure that the codes are living documents that serve the best interest of society. 

 
3.2.2 State of the Art 

The past several decades have witnessed significant change in the design of 
civil infrastructure as our understanding of and ability to manage the 
uncertainties involved with material resistances and load demands has 
improved.  Improvements have been the result of material research, testing, the 
establishment and study of performance databases, and better computational 
methods and platforms.  Reflecting these advances, design methodologies have 
shifted from deterministic-based approaches, such as allowable stress design, to 
the semi-probabilistic approaches found in current codes such as Load 
Resistance Factored Design (AASHTO, 2007), the Canadian Highway Bridge 
Design Code (CHBDC, 2006), and the European Highway Agency Eurocodes 
(EUROCODES, 2002).  In the near future, performance-based design will likely 
be adopted worldwide as progress in material science, design software, 
construction methods, and structural health monitoring have empowered the 
engineer to better address the uncertainties inherent to the design and operation 
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of civil structures.  In general, this evolution of design practice is shown in 
Figure 3.2. 
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Figure 3.2.  Evolution of Design Methods 

 
In allowable stress design, safety has been assumed to exist if elastically 

computed stresses (ECS) did not exceed allowable working stresses (i.e., a 
preset fraction of the concrete strength, yield strength).  Uncertainty is 
accounted for through the use of a factor of safety (FS) obtained through expert 
opinion.  In factor-based methods such as the LRFD, load and resistance factors 
have been developed through expert opinion and calibration efforts.  In 
performance-based approaches, the engineer is responsible for the specification 
of all random variables contributing to loads and resistances.  The primary 
motivation to adopt a probabilistic-based approach is to change the design 
experience from “specification-based” and “process-oriented” to “performance-
based” and “product-oriented” to allow the engineer more flexibility to leverage 
new materials and technologies (Aktan et al., 2007).  Despite differences in 
their treatment of uncertainty, each method (deterministic, semi-probabilistic, 
and probabilistic) seeks an optimal balance between economical design and safe 
performance. 

Figure 3.2 serves as an important reminder that any discussion of the role of 
monitoring must be placed into the context of which design method is being 
considered.  Also interesting is that these methods are not completely 
standardized across country, type of project, or educational platforms.  For 
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example, most back-of-the-envelope calculations, introductory engineering 
courses, small local projects, and many military engineering manuals utilize 
allowable stress design.  Generally, where design is regulated at the national 
level as is the case for public buildings, roads, and bridges, a semi-probabilistic, 
factored design approach is utilized.  Factored design (i.e., Load and Resistance 
Factor Design (LRFD)) is usually taught in upper-level educational courses and 
is the predominant method currently used in practice and prescribed by current 
codes.  Fully probabilistic, performance-based design is typically left for 
graduate level courses and leading researchers in the field believe that this 
approach is the next step in the evolution of design methodology (AASHTO, 
2005)  

 
3.2.3 Using SHM to Improve Design Factors and Methods 

Within this context, the answer to the question on how monitoring can be 
utilized to improve design is twofold.  First, monitoring can provide data that 
can be utilized to confirm or improve existing load factors, resistance factors, 
and load combinations for extreme events used in existing code provisions 
(semi-probabilistic).  For example, in studying the effect of live loads to 
calibrate the LRFD for the design of highway bridges, the statistical database of 
truck weights was primarily obtained from a 1975 survey of 9,250 trucks 
collected at a weigh station over a two week period in Ontario, Canada (Nowak, 
1993).  Although appropriate at the time, it is possible that heavier trucks may 
have avoided the weigh station creating the need for more sample data and more 
importantly, the trucking industry has undoubtedly changed over the past 30 
years.  Recently, weigh in motion (WIM) studies have been utilized to create 
much larger databases for truck weights.  One such study (Gindy and Nassif, 
2006) examines an 11-year period across 33 WIM sites located in the state of 
New Jersey and consists of millions of records.  Truck volumes, types, and 
weights, as well as seasonal effects and the implication of short collection 
periods are addressed.  Such studies, based upon monitoring information, can 
provide the data necessary to re-examine the assumptions utilized in existing 
codes.  Truck weights are of course only one example.  Also interesting is how 
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these trucks affect bridge reliability.  To answer this question many studies have 
been done on traffic simulation to investigate the impact of vehicle spacing, 
vehicle speed, and the frequency of side-by-side design truck occurrences 
(O’Connor and O’Brien, 2005; Cohen et al., 2003; Zokaie, et al. 1991).  With 
respect to the conduct of a system reliability analysis, past studies have 
estimated system reliability factors that account for redundancy present in 
typical bridge configurations (Ghosn and Moses, 1998).  Current ongoing 
studies are investigating how such factors (e.g. load distribution factors between 
girders) can be more accurately modelled using SHM (Peil, 2003).  Again, these 
are just several examples.  Indeed, the question becomes what assumptions are 
the most important across existing codes/models and which would serve as 
candidates for validation through monitoring efforts. 

In addition to refining load and resistance factors, existing codes all use load 
combinations to provide an adequate measure of safety for the occurrence of 
simultaneous extreme, or design load, events.  In a report titled the Design of 
Highway Bridges for Extreme Events (Ghosn et. al 2003), the authors 
recommend adjustments to the LRFD load combinations after determining that 
the existing factors and combinations exhibit large discrepancies between the 
reliability levels for the different extreme events under consideration.  This 
study, based on existing safe structures, did not make use of monitoring data but 
provides great insight into the amount of uncertainty remaining in existing 
codes and of the process required to evaluate and modify target safety levels.  
Adding information obtained from monitoring is logical progressive step for a 
future update. 

The second way monitoring can be utilized to improve design is by 
providing the engineer with the statistical information necessary to employ 
reliability-based / performance-based / fully probabilistic design (equivalent 
terms).  As such, monitoring would serve as the catalyst to enable a change in 
methodology itself.  In this approach the designer has much greater flexibility, 
but also bears the responsibility of quantifying and appropriately treating all of 
the uncertainties that determine member resistances, load effects, and load 
combinations.  Although reliability based design has been proposed in several 
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countries and some provisions allow more flexibility for its use, this method to 
date has not been widely adopted.  Expanding upon Figure 2.5 (optimal design 
based on life-cycle costs), it is reasonable to expect that the use of a SHM-
enabled, reliability-based approach would lead to a more optimal design 
solution as shown in Figure 3.3.  Although monitoring does not change the 
relationship between the costs (i.e. that higher initial costs result in lower failure 
and additional costs) monitoring does change each cost itself.  Specifically, the 
initial cost is increased (upfront SHM system cost), the failure cost is decreased 
(less risk), and the additional costs are decreased (improved optimal 
management decisions) across the entire profile.  This reduction in total life-
cycle cost is also expected to be paired with a higher level of performance.  
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Figure 3.3.  Optimum design solution based on life-cycle cost minimization with 
and without monitoring (adapted from Frangopol and Liu, 2007)  

 
Collecting the information necessary to re-examine existing codes or to 

provide consistent guidelines for the application of performance-based design is 
an interesting challenge.  Data is required from multiple structure types across 
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various locations over long periods of time.  With respect to highway bridges, 
superbridges are currently the most common monitoring candidates due to their 
complexity and high cost.  However, short-span bridges typically have lower 
target reliability indexes due to higher live-load to dead-load ratios (Ghosn, 
2000).  Additionally, a higher ratio of short-span bridges are classified deficient. 
To apply consistent levels of safety across the fleet, bridges of all span-lengths 
must be considered.  As a result, engineering experts will need to come to a 
consensus for data collection methods and the appropriate models for their use.  
Due to cost and the amount of information required, such a collection effort will 
likely require coordination from national and international agencies.  An 
example of the successful implementation of such a program can be found in 
the field of structural health monitoring for damage detection.  Within this field, 
a benchmark study of a progressively damaged frame structure has been 
established and data was posted online to provide researchers with a common 
reference to develop damage detection algorithms (ASCE, 2000).  Although 
replicating such a program for bridges is of substantial effort, the potential 
benefit is also significant.  Once enough data is collected, it is reasonable to 
assume that by measuring, instead of modelling, demands upon and the 
performance of in-service structures, the result would be more efficient and safe 
designs. 

3.3 Monitoring as a Catalyst to Improve Assessment, 
Performance Prediction, and Management  

 
3.3.1 State of the Art 

Similar to the analysis of how monitoring can be leveraged to improve 
design, the impact of SHM on infrastructure assessment, performance 
prediction, and management largely depends upon the model and methodology 
considered.  As with design, this field continues to develop, exists in different 
forms across different codes and countries, and is one where the implementation 
of ideas from research into practice can take many years.  As such, it is 
appropriate to consider how monitoring could be phased into existing methods 
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while serving as a catalyst for the development of new methods centered around 
the collection of real-time structural response data.    
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Figure 3.4.  Likely Evolution of Assessment, Prediction, and Management Models 
(adapted from Frangopol and Messervey, 2008b) 

 
Figure 3.4 shows the likely evolution of assessment, prediction, and 

management models.  In contrast with Figure 3.2 (design methods), 
management programs are still in the earlier stages of development located at 
the left side of Figure 3.4.  It is believed that SHM technologies will facilitate 
the development and adoption of more advanced methods where management 
decisions are based on structure specific performance and condition data 
simultaneously.  As detailed in Chapter 2, existing bridge management 
programs are almost exclusively based on visual inspections.  In special cases, 
non-destructive evaluation (NDE) tests are performed and although relatively 
few, there is a growing number of monitoring applications.  However, such tests 
are generally on an ad-hoc basis to target a specific fault and are not integrated 
into the overall maintenance and management hierarchy.  As such, how to 
integrate new technologies into existing systems is a logical next step which can 
begin with two of the primary functions of management programs, assessing or 
certifying bridge capacity, and planning for maintenance and rehabilitation 
actions. 

 
3.3.2 Using Monitoring to Improve Bridge Capacity Ratings 

Several countries use bridge capacity ratings as an assessment and 
management tool.  Canada is one such country.  Section 14 of the Canadian 
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Highway Bridge Design Code (CHBDC, 2006) provides inspectors with the 
guidelines and methods to determine if an existing bridge will carry a particular 
set of loads.  The end result is a posting of allowable truck weights and/or 
certification that a particular bridge still meets acceptable safety requirements 
for traffic along a specified route.  The approach can be likened to the LRFD in 
that it is semi-probabilistic in nature.  Reliability-based calibrated load and 
resistance factors are provided for use under different loading configurations of 
design trucks.  The reliability index β is used, but in an inverted sense.  Instead 
of determining the probability of load demand exceeding capacity as is the case 
in structural reliability, the index is used as a calibrated factor to ensure an 
adequate level of safety.  Values for the reliability index are determined by the 
behavior of the bridge, type of inspection being conducted, and type of traffic 
loading being considered.  Values for normal traffic and for permit-regulated 
heavy loads not requiring supervised escort are provided in Table 3.1 (there are 
several such tables in the CHBDC for varying types of traffic considerations).   

 

INSP1 INSP2 INSP3

S1 E1 4.00 3.75 3.75
E2 3.75 3.50 3.25
E3 3.50 3.25 3.00

S2 E1 3.75 3.50 3.50
E2 3.50 3.25 3.00
E3 3.25 3.00 2.75

S3 E1 3.50 3.25 3.25
E2 3.25 3.00 2.75
E3 3.00 2.75 2.50

Table 3.1  Target reliability index, β for normal and non-escorted 
                 permit traffic (according to the CHBDC)
System 
behavior 
category

Element 
bahavior 
category

Inspection level

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

System behavior is used to account for the presence of multiple load paths 
using the following designations: S1 – element failure leads to total collapse, S2 
– element failure probably does not lead to total collapse, and S3 – element 
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failure leads to local failure only.  Element behavior is utilized to account for 
the failure mode/mechanism of a member using the following designations: E1 
– element is subject to a sudden loss of capacity with little warning (buckling, 
rebar pullout, brittle behavior), E2 – element is subject to sudden failure but 
retains post failure capacity (concrete with adequate rebar, steel with post-
buckling capacity) and E3 – element is subjected to gradual failure with 
apparent warning signs (steel in bending or tension).  Inspection levels are 
utilized to account for the ability to obtain information during an inspection on 
the member of interest as: INSP1 – A component is not inspectable (inside of a 
box girder), INSP2 – inspector is able to obtain a qualitative assessment, and 
INSP3 – the inspector is able to obtain and document a quantitative assessment. 

Within this type of approach, monitoring would most directly affect the 
inspection level.  Where applied, it is reasonable to conclude that the use of 
SHM would lead to the selection of INSP3.  If changes to the method were 
considered, an INSP4 column might be appropriate.  It is also possible that 
monitoring would allow a more accurate system behavior assessment.  
However, it is likely there is less error associated with the classification of 
system behavior than there is with the collection of quantitative inspection data 
implying a lower benefit/cost ratio for SHM applied strictly to the investigation 
of system behavior.   

Once selected, the reliability index is used in one of two methods to 
determine the live load capacity factor, F.  In the first method (primary), β 
determines the selection of appropriate dead and live load factors, αD and αL, 
respectively.  As an example, Table 3.2 shows the selection process for the live 
load factor for normal traffic.  Although there is only one row for Table 3.2, 
other tables for the selection of this factor (e.g. for permit traffic) also delineate 
span length and the type of analysis as selection criteria. 

   

2.50 2.75 3.00 3.25 3.50 3.75 4.00
All Spans 1.03 1.04 1.05 1.06 1.07 1.08 1.09

Table 3.2.  Live load factors a L, for normal traffic and all types of analysis
                   (according to the CHBDC, 2006)

Span
Target Reliability Index, β
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Once selected from the appropriate tables, αD and αL are utilized to calculate the 
live load capacity factor F as (CHBDC, 2006) 
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           (3.1) 

 
In general, the first term of the nominator specifies the resistance, the second 
term dead load, the third term load effects (wind, creep, shrinkage, temperature, 
and settlement) when considered, and the denominator is the factored live load 
with l representing the unfactored dynamic component of the live load 
expressed as a fraction of the nominal static life load effect.  Once computed, F 
enables the determination of a posting factor from a graph that then specifies 
allowable bridge capacity.  Within this approach, aside from the determination 
of the live and dead load factors, SHM data could also be utilized to provide 
more accurate material resistance properties and to better account for load 
effects such as wind and temperature.   

The second, or alternate, method of determining the live load capacity factor 
F is called the mean load method.  This method is more appropriate for the 
direct inclusion of monitoring as it incorporates statistical data.  Using the 
alternate method, F is determined as (CHBDC, 2006) 
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         (3.2) 

 
In general, the first term of the nominator is the product of the mean resistance 
and a reduction factor determined by the desired level of safety (β) and the 
coefficients of variation of the resistance (VR) and total load effects (VS). The 
second term accounts for the mean dead load effect and the denominator 
accounts for the mean live load effect.  Although the mean resistance, mean 
dead load, and mean live load are calculated as specified in the standard 
method, the bias coefficients and coefficients of variation for each of these 
factors may be taken from technical publications or field measurements.  As 
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such, there is room for monitoring to play a larger role in the determination of 
F.   

 
3.3.3 Using Monitoring to Improve Reliability-Based 
Assessment 

Much work has been done in the development of reliability-based life-cycle 
bridge management models (Akgul and Frangopol, 2005; Frangopol and Liu, 
2005; Neves et al., 2005, Enright and Frangopol, 1999).  In the most basic 
sense, these models determine a structure’s initial state, model its deterioration, 
and seek a Pareto solution to optimize its lifetime cost, performance, safety, and 
condition across a range of maintenance options and inspection intervals.  To do 
this, such models seek to simulate or calculate all parameters affecting structural 
performance and are well suited to account for structural redundancy through 
system analysis.  However, a challenge preventing the wider use and acceptance 
of Life-Cycle Management (LCM) methods is that even after a bridge is 
modeled, slight variations in the input parameters can produce radically 
different results, thus decreasing the confidence and perceived value of the 
process (Estes, 1997).  In literature, researchers developing LCM models often 
state the need to improve the base of knowledge governing deterioration, failure 
mechanisms, and load effects in the structure of interest.  To this end, Catbas et 
al. (2008) state that the consideration of the uncertainty associated with critical 
loading and structural parameters is one of the most critical issues in assessing 
the condition of existing civil infrastructures.   

Although the general form of the reliability calculation given by Equation 
2.4 (P(R - L > 0) is very simple, its application to a performance function for an 
actual structure quickly becomes more complicated.  To illustrate some of the 
considerations, Equation 3.3 provides the general form of the performance 
function for a reinforced concrete slab analyzed with respect to moment 
capacity.   

lldluDemandCapacity MMMMMg −−=−=)1(         (3.3) 
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where Mu is the ultimate moment capacity, Mdl is the moment demand due to 
dead load, and Mll is the moment demand due to live load.  Using a case study 
of a bridge in Colorado, Estes (1997) evaluated each of these terms as functions 
of random variables.  To illustrate some of the complexities/considerations, 
these equations are shown here in their general format.  For the ultimate 
moment capacity 
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where At is the area of the tensile reinforcement, fy the yield strength of the 
tensile reinforcement, deff the depth of the reinforcement, at the effective depth 
of the equivalent concrete compression block, f’c the concrete compression yield 
strength.  For the dead load moment demand 
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where w is the combined weight concrete and asphalt, s the unsupported slab 
length, and Cf a continuity factor based upon how many girders the slab crosses.  
The live load moment demand is calculated as 
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where Ltrk is the load from a single wheel of the HS-20 truck and If is an impact 
factor.  Each of the variables in Equations 3.4-3.6 are random variables.  They 
can be modeled using accepted uncertainty factors and bias coefficients, they 
can be measured or monitored, or they can be taken as accepted factors from 
existing codes and guidelines.  It is noted that Equations 3.4-3.6 are developed 
for a specific case study and should not be applied to another example.    

The complexity of evaluating Equation 3.3 increases in two ways (from 
beyond the characterization of the random variables).  First, a time dependent 
reliability analysis must characterize the deterioration (or change) of the random 
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variables over time.  Deterioration and its effect on capacity is in particular 
highly uncertain.  Secondly, a system analysis must model how this 
performance function relates to other failure modes and other structural 
members or systems.  To facilitate a solution to this complex problem, SHM 
provides the capability to reduce the uncertainty associated with the initial 
characterization of the random variables, to reflect changes in the random 
variables over time by updating, and the ability to better quantify system effects.  
A sensitivity analysis as part of a reliability analysis shows which random 
variables and which performance functions are most important to the analysis of 
a structure.  This would indicate where allocate monitoring resources.  Again 
using a general view of the reliability problem, Figure 3.4 updates Figure 2.10 
(general structural reliability concept) to incorporate the expected result of 
including monitoring data.  
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Figure 3.5. Structural reliability concept with and without monitoring (adopted 
from Frangopol and Messervey, 2008c) 

 
The modeled mean load effect is decreased, the mean resistance is increased 
and the standard deviation of each is decreased.  Monitoring has the greatest 
impact upon the characterization of the load effect (dynamic vs. static random 
variables).  It is also noted that a more accurate characterization of L and R also 
affects the probability of failure (i.e. P(R–L < 0)).  Although this is the 
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anticipated result, it is possible that monitoring could also provide a 
confirmation of modeling assumptions or indicate that the actual quantities are 
worse than anticipated.   

 
3.3.4 Using Monitoring to Improve Inspection Scheduling 

Inspections (unless there is a problem) are performed at pre-determined 
intervals according to the type of inspection being performed.  As shown in 
Figure 3.6a, this can result in inspections that are not needed or not optimal 
(such as when a structure is new).  In addition, any inflexible inspection 
schedule runs the risk of having performance fall below an established threshold 
during the inspection interval.  A more optimal method to schedule inspections 
is to schedule them based on performance as shown in Figure 3.6b.  Using such 
an approach, inspection intervals may vary and occur as often or as infrequently 
as needed.   
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Figure 3.6  Inspection scheduling/conduct (a) based off time and (b) based off 

performance prediction (adapted from Frangopol, 1998, Rafiq, 2005). 
 

Monitoring makes a performance-based inspection program more attractive 
by reducing the uncertainty associated with performance between inspection 
intervals.  Continuous monitoring would also reduce the risk of an unobserved 
drop below a performance threshold.  SHM could also facilitate a hybrid-type 
inspection scheduling approach where cursory (less expensive) inspections 
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occur periodically at prescribed intervals and more detailed and expensive 
inspections become performance driven. 
 
3.3.5 Using Monitoring to Improve Performance Prediction and 
Management Models (Bridge Management Programs) 

 
3.3.5.1 Condition State Models   

Condition state models (as detailed in Sec. 2.2.2.2) assess structural 
performance based on visual appearance.  The main advantage of condition 
state models is their ease and simplicity of use.  Current versions of Pontis 
facilitate user input of inspection data, make recommendations on preservation 
actions for individual bridges as well as networks, have provisions to account 
for failure costs, and provide low cost maintenance alternatives for periods up to 
30 years (Roberts & Shepard, 2002).  The main disadvantages of such models is 
that the actual infrastructure safety level is not explicitly or adequately 
accounted for and that discrete stochastic transitions between condition states 
fail to account for previous structural behavior and prohibit more accurate 
continuous modeling approaches (Frangopol and Liu, 2007).  Additionally, 
there are several limitations associated with visual inspections.  Successful 
visual inspection depends on considering all possible damage scenarios at all 
critical locations, not an easily accomplished task even for an experienced 
inspector (Aktan et al, 2001).  Human error is also a consideration.  One recent 
study reported that in some cases more than 50% of bridges are being classified 
incorrectly via visual inspections (Catbas et al., 2007).  Although certainly not 
the norm, a separate recent article highlighted the falsification of bridge 
inspections by contractors to keep up with timelines for reporting purposes 
(Dedman, 2008b).  Lastly, as the bridge population continues to worsen in terms 
of magnitude and severity, it is questionable whether or not existing appraisal 
methods will be adequate (Susoy et al, 2007).   

Due to the limitations of condition state models, maintenance management 
decisions made on the basis of infrastructure condition states alone are not 
necessarily optimal with respect to safety or cost.  For example, it is possible 
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that a reinforced concrete structure with satisfactory visual condition states 
could actually be structurally unsafe.  This would occur when invisible flaws 
such as corrosion of the embedded reinforcement or unseen cracking exists.  In 
such a case, maintenance funding would not be allocated.  However, it is also 
possible that a structure may be structurally sound despite a poor visual 
condition status.  In this situation, only minor repairs may be necessary and 
costly retrofit could be avoided if better information becomes available 
(Frangopol and Liu, 2007).  To address some of these limitations, several 
authors have investigated incorporating safety into condition state models by 
assigning an associated amount of section loss as a random variable to each 
condition state and by discretizing inspected members to better pinpoint where 
deterioration is present for structural analysis (Estes and Frangopol, 2003; and 
Hearn and Frangopol, 1996).   

The use of monitoring to improve condition state models is somewhat 
limited as the model is based upon the simplicity of correlating visual indicators 
and experience to bridge performance.  However, the practical implementation 
of SHM will likely first occur as an addition or evolutionary step to programs 
such as Pontis as experience with and validation of SHM occurs. Within 
condition state models, monitoring could be used to address the concern of 
safety by establishing performance thresholds, or safeguards, that would be 
triggered for action of a bridge manager in the event of overloading or abnormal 
behavior.  A simple example would be a stress, strain, or deflection threshold.  
Once in place, observable trends in the monitoring data could serve to validate, 
improve, or create new deterioration processes to replace the stochastic 
transition model currently in use or to better define its transition probabilities. 

 
3.3.5.2 Reliability Models Based on Simulation 

The development of structural reliability theory and improved computing 
power has led to the development of reliability-based bridge management 
models that explicitly account for structural safety (Cruz et al. 2006; Watanabe 
et al. 2004; Casas et al. 2002; Das et al. 1999; Frangopol 1999; Frangopol et al. 
1998).  Such models use the reliability index as the performance metric and 
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treat deterioration in a probabilistic allowing for a continuous treatment of the 
structure over time with respect to safety.  Figure 3.7 depicts the three and eight 
random variable profiles proposed by Frangopol (1998) and Frangopol et. al 
(2001) to model the reliability index profile without and with preventive 
maintenance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7. Reliability profile models with and without preventive maintenance 
(adopted from Frangopol, 1998). 

 
Based on the study of a database of existing bridge and bridge studies, each 

of the factors that affect bridge performance over its service life with respect to 
safety are described as random variables.  These random variables include the 
initial reliability index β0, the time associated with the onset of deterioration t1, 
the rate of deterioration without maintenance α, the rate of deterioration after 
preventive maintenance θ, the increase in reliability due to preventive 
maintenance γ, the time to the first preventive maintenance action tp1, the time 
to successive preventive maintenance actions tp, the duration of preventive 
maintenance effects tPD, the time to rehabilitation without maintenance tR, and 
the time to rehabilitation with preventive maintenance tRP.  Once an initial 
reliability index is calculated, or selected from a database of like structures, 
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Monte Carlo Simulation is conducted to investigate and optimize different 
maintenance and repair strategies over time.  This model has been applied to 
individual and groups of bridges in the United States and in the United 
Kingdom (Frangopol et al. 2001; Frangopol, 2003; Frangopol and Neves, 2003; 
Neves and Frangopol 2004; and Petcherdchoo et al. 2004).   

Careful attention is required when researching the literature or when 
applying the three and eight random variable models to ensure their proper 
understanding and use.  The model can be used to describe the performance of 
an entire structure (global approach), to the performance of a system (e.g. deck), 
or to that of an individual member (e.g. girder).  The initial estimates for the 
random variables of this model were obtained empirically with regard to global 
parameters and many following studies have refined the approach for specific 
applications, systems, or members.  As such, any use of or reconstruction of the 
model must pay particular attention to the random variable descriptors selected 
and the type of analysis being conducted.  

The use of monitoring to improve reliability models based on simulation is 
attractive.  Typically, the evaluation of random variable descriptors associated 
with any nondeterministic performance model is time consuming and 
expensive.  In addition, the random variables are inherently structure-specific 
but require the empirical observation of similar structures experiencing different 
environmental conditions for their estimation resulting in a loss of 
accuracy/higher degree of uncertainty.  These dynamics are important because 
such models predict far into the future and the results are extremely sensitive to 
the random variable input parameters.  For these reasons, monitoring offers 
great potential to facilitate the characterization of these variables, enhance 
model accuracy, and enable the use and acceptance of this model in practice by 
obtaining and updating random variable input parameters over time.  In general, 
to minimize cost and maximize benefit monitoring effort should focus on the 
most significant variables affecting the performance of the chosen model.  With 
respect to the eight variable model shown in Figure 3.7, this work has already 
been completed in part by Kong and Frangopol (2005b).  In this work a 
sensitivity analysis of the eight random variables determined that the initial 
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characterization of bridge reliability βo and the rates of deterioration, α and θ, 
were most significant.  As such, any organized data collection effort employing 
SHM to better understand these parameters would benefit this approach. 

As it can be argued that condition state models do not account for safety, it 
can be also be argued that reliability-based models do not account for condition.  
For example, a very safe structure may have a deck full of potholes hazardous 
and damaging to vehicular traffic.  In such a case, repairs must be conducted 
despite a high level of structural safety.  To resolve this problem, Neves and 
Frangopol (2004) applied the same random variable profile approach to the 
condition profile over time as shown in Figure 3.8.   
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Figure 3.8  Random variable model of the condition and reliability profiles 

considered simultaneously using a target safety level (adapted from Neves and   
Frangopol, 2004) 

 
Using such an approach, safety, condition, and cost can be considered 

simultaneously as a multi-objective optimization problem to determine Pareto 
optimal maintenance and repair strategies.  Such work is investigated in (Neves 
and Frangopol, 2004; Neves et al., 2006a; Liu and Frangopol 2006a; Furuta et 
al. 2006; Neves et al. 2006b; Bucher and Frangopol, 2006).  As is the case with 
the reliability-based model, monitoring information would significantly 
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improve the combined approach as there more random variables under 
consideration as well as the correlations between these variables to determine.   

 
3.3.5.3 Reliability Models without using Simulation 

Reliability models without using simulation attempt to construct an 
analytical and predictive model of structural performance using structural 
reliability concepts.  Ideally, a bridge management program using such an 
approach would allow for individual or bridge network assessment, 
maintenance, inspection, and repair planning based on real-time structure-
specific data.  However, the approach is obligated to characterize all loads and 
their effects, structural resistance and its deterioration over time, the interaction 
of different failure modes, and the consideration of system effects.  By its very 
nature, this method is heavily dependent upon monitoring data and is the goal of 
many researchers worldwide (Frangopol and Messervey, 2007c; Catbas et al, 
2007; Moon and Aktan, 2006; Budelman and Hariri, 2006; Messervey and 
Frangopol, 2007a; Klinzmann et al., 2006).   

Figure 3.9 shows a general schematic for the reliability based model without 
simulation.  Figure 3.9a presents a general framework for the inclusion of 
monitoring data into a reliability-based model.  Figure 3.9b shows how SHM 
data can be utilized to update the reliability profile at any time and Figure 3.9c 
indicates the validation of performance after a maintenance action.  The process 
begins with a reliability-based treatment of the structure that helps determine a 
task-oriented monitoring solution and initial performance prediction.  Once in 
place, an assessment loop begins in which monitoring data is used to update the 
structural model.  Once the predictive model is updated, maintenance actions 
can be optimized for decision by the asset manager.  If the monitoring solution 
employed is permanent (continuous), performance flags can serve as a warning 
system to alert the asset manager immediately of any violation of a critical 
threshold or unexpected distress.  The result of any such integrated LCM/SHM 
approach is an adaptive, self-learning management system with the capacity to 
improve the underlying theoretical-based models through structure specific 
response data over time.  A more accurate model provides the potential for cost 
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savings through optimal maintenance and inspection scheduling, and a decrease 
in risk through the reduction of uncertainty (Frangopol and Messervey, 2007b). 
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Figure 3.9.  Framework and reliability profiles of an SHM life-cycle reliability-

based bridge management program. 
 
It is important to note the difference between the three bridge management 

approaches.  Condition state models assess a structure using a visual inspection 
and deterioration occurs at discrete intervals using a stochastic process based on 
historical records.  Reliability models based on simulation assess a structure 
through a reliability analysis, or by using the reliability of like structures, and 
then an equivalent model is developed (not unlike the process of determining an 
equivalent member for a finite element analysis) that approximates the effects 
of deterioration over time and optimizes maintenance and repair efforts.  
Reliability models without simulation assess a structure and its deterioration by 
defining all random variables and their behavior over time through the 
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evaluation of performance functions.  Although such a model is desirable, it has 
been slow to gain acceptance because of the amount of data required, its 
sensitivity to small changes in the input parameters, and the complexity of the 
analysis (Estes, 1997).  Although SHM is best suited for the last approach (i.e. 
reliability models without simulation) and will likely be the catalyst that enables 
further use and acceptance of this method into practice, how monitoring can be 
used in each approach is important as all three models (i.e., condition state 
models, reliability models based on simulation, reliability models without 
simulation) will exist and be implemented for the foreseeable future.  Table 3.4 
provides a summary of the assessment mechanism, advantages, and 
disadvantages for the bridge management program approaches.  Included in 
Table 3.4 are hybrid models that incorporate both safety and condition.  The 
summary for reliability-based models includes both with and without simulation 
approaches. 

 

Model Type/
Performance 
Metric

Condition State Models Reliability-Based Models Hybrid Models
Safety + Condition

Assessment
mechanism

Visual Inspection
NDE

SHM
Analytical models

Statistical data collection

SHM
Analytical models
Visual inspections

Main
advantages

Simplicity
Ease of implementation

Consideration of safety
Model flexibilty 

Structure-specific treatment 
of safety and condition

Main
disadvantages

Absence of safety quantification
Prone to human error

Discrete transition states

Absence of condition quantification
Sensitivity and need for accurate input 

parameters

Higher initial costs
Increased complexity

Table 3.4. Types and evolution of Bridge Management Programs with assessment mechanisms, advantages, 
                   and disadvantages

 
 

3.4 Application  
A simple example is provided to begin to illustrate some of the concepts 

presented in Chapters 2 and 3.  By using accepted procedures in existing codes 
and information from a recent bridge failure, the intent of the example is 
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demonstrate how a risk-based decision making approach can be utilized to 
quantify monitoring benefit.  

Use of Equation 2.12 (R = pfC) is desired which calls for a reasonable 
estimate of the consequence of failure C.  The consequence of failure can vary 
widely depending on what costs are included and its evaluation is somewhat 
subjective.  In addition to site clean up and the design/construction of a 
replacement structure, these costs can include those associated with the loss of 
life, lawsuits, new legislation, loss of productivity, and user costs.  This term, in 
particular, would benefit from standardization guidelines for its calculation.  In 
the absence of providing specific guidelines, a reasonable starting point could 
be the designation of three levels of consequence depending upon the structure 
size, importance, and function: low, medium, and high.  Estimates for the three 
levels could be obtained by researching historical failures.  An example of a 
high consequence level is developed here using reports and information 
surrounding the recent collapse of the I35W bridge collapse in Minneapolis, 
USA.  A similar analysis of the Laval overpass collapse (2005) would provide a 
reasonable estimate or a medium consequence level (not conducted in this 
example).   

Using news reports and studies in the months following the collapse of the 
I35W Bridge, Table 3.3 lists the estimated consequence of failure for the 
tragedy (Podoba, 2007, Jardin, 2007).    

 
 
 
 
 
 
 
 
 
 

Site Recovery Costs $400 million

Winning bid for new structure $234 million
State liability cap of $1 million on 13 deaths $13 million
Estimated $10,000 hospital bill on 100 injured $ 1 million
Lawsuits, legislation, loss of productivity, and investigation (not estimated)

Total Estimated Consequence of Failure US$893 million

Table 3.3. Estimated costs associated with the collapse of the I35W bridge in Minneapolis,
               Minnesota, USA, 2007 [11, 12]   

Estimated user costs: 140,000 vehicles/day, 10 mile detour, IRS allocated .48 
cent/mile, and 365 day construction time of new bridge   

$245 Million
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Particular attention is provided to the calculation of user costs which are often 
vary dramatically.  Here, these costs are estimated as  

 
User Costs = ADT x Detour length x Government rate x Construction time            (3.7) 
 
where ADT is the average daily traffic.  Applying the government approved rate 
for mileage and a simple internet map search for the detour length remove 
subjectivity from the user costs although lost time/productivity is not included.  
Additionally, applying a liability cap for casualties removes the difficult job of 
placing value on human life.  For the purpose of this example, a high level 
consequence of failure is taken as US $893 million.   

To obtain probabilities of failure from existing accepted methods, row S1 
(element leads to total collapse), E3 (element shows warning of failure), is 
selected from Table 3.1 (reproduced from the CHBDC).  This selection is 
motivated by investigating what is the utility associated with the quality of 
available information represented by the type of inspection conducted.  The 
target reliability indexes corresponding to S1/E3 are 3.5, 3.25, and 3.0 
respectively.  Using $893 million as the consequence of failure (Table 3.3), the 
application of Equation 2.12 yields the following results for the failure cost: 

 
β = 3.5  pf = 0.000233  Cf  =     $208,069 
β = 3.25  pf = 0.000577  Cf  =     $515,261 
β = 3.0  pf = 0.001350  Cf  =  $1,205,550 

 
Comparing the differences in the failure cost provides one estimate for the 
benefit associated with changes in the target reliability index through more 
accurate structural information (monitoring). 

An event tree as shown in Figure 3.10 can be utilized to begin to incorporate 
life-cycle costs and to formulate a risk-based decision based off the least total 
expected cost.  Here, the decision is to select either a visual inspection program 
or a monitoring program.  The cost of the visual inspection program is 
estimated as a life-cycle cost at a 4% discount rate with the cost of each 
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inspection is estimated as $10,000 for a large-scale bridge structure (Dedman, 
2008a).  The time period considered is 30 years with the first inspection taking 
place at time t = 0 (assuming this analysis is for an existing structure) and the 
last inspection occurring on year 30 for a total of 16 inspections.  A first 
estimate for the cost of the monitoring program is $500,000.  This estimate can 
be adjusted pending the analysis outcome and can serve as a design constraint to 
develop monitoring alternatives as long as a monitoring benefit is present in the 
result.  The failure probabilities are taken from the prior calculations using β = 
3.0 (pf = 0.001350) for the visual inspection program and β  = 3.5 (pf = 
0.000233) for the monitoring program.   
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$94,765 x 0.998650 = $1,300,315

 
Figure 3.  Risk-based decision tree evaluating the expected costs of a visual 

inspection program and a monitoring program. 
 

Further defining and standardizing appropriate values for the reliability index in 
this type of analysis needs further investigation.  Based on historical trends in 
civil engineering, it is reasonable to assume that such values (a) can first 
estimated by a panel of experts, (b) can then be improved / calibrated as more 
and more monitoring systems come online, and then (c) performance-based 
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methods can be developed for structure-specific use.  The end result of the 
calculations for this analysis is a difference of US $592,246 (i.e., $1,300,315 - 
$708,069).  It is worth noting that standardization and guidelines are important 
in such calculations as the results are sensitive to the length of time considered 
for life-cycle costs, the discount rate, the probability of failure, and the 
consequence of failure. 

Extending this example to incorporate the effect of time and to optimize 
management decisions requires modeling changes in probabilities 
(deterioration) and a more complete treatment of comparing life-cycle costs 
between monitoring and non monitoring approaches.  These topics are 
addressed in Chapter 4.  Additionally, a risk-based decision approach is best 
suited for a point-in-time analysis.  A careful treatment of loads effects (Chapter 
5) and risk costs in time (Chapter 6) are required.  For such an approach, a time-
dependent reliability analysis is more appropriate.  

 

3.5 Conclusion  
How the employment of monitoring technologies affects the reliability of 

structures directly poses the larger question of how better information and 
reduced uncertainty change the design and assessment of civil infrastructure.  
Investigation into this issue quickly reveals that the problem must be carefully 
framed as both design methods and assessment techniques exist in different 
forms from location to location, across different types of projects, and across 
varying political systems.  As such, the potential impact on monitoring depends 
in part upon the context of its use.  However, and more importantly, monitoring 
provides the capability and catalyst to revisit and improve existing design 
codes, assessment methods, maintenance, and management techniques.  
Because of the importance and value of civil infrastructure to the society it 
supports, designing better and managing more efficiently is necessary and 
timely, especially as focus turns to managing existing aging structures.  With 
respect to design, monitoring will likely enable and promote the use of 
performance based design methods.  With respect to bridge management 
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programs, monitoring will likely enable further development and the adoption 
of reliability-based life-cycle bridge management.  In short, monitoring has the 
potential to significantly aid engineers and managers in making optimal 
resource allocations by providing site-specific real-time information.   

As this field is developed, researchers and engineers will face a number of 
challenges often not considered in current practice.  Probabilistic modeling, 
rates of deterioration, predicting costs, sensor placement, information 
management, and linking this information to accepted design and assessment 
standards are some of the issues to name a few.  To justify the initial and 
follow-up costs of employing SHM, the development and use of metrics that 
quantify and communicate their utility are crucial to the acceptance adoption of 
monitoring systems in practice.  To achieve this end, engineers and managers 
must become more comfortable in the assessment and design of civil structures 
within a performance-based, life-cycle, risk inclusive context.    

 
 



 
 
 
 
 

Chapter 4 
 
 
 

INTEGRATION OF HEALTH MONITORING 
IN ASSET MANAGEMENT IN A LIFE-
CYCLE PERSPECTIVE 
 
 
 

Abstract 
 

From the strategic to the structure level, this chapter discusses the integration 
of SHM and LCM in a life-cycle context.  The investigation of this topic 
quickly reveals that it involves many disciplines and many interested parties.  
Furthermore, it requires a change in how SHM is typically employed (e.g. as 
bottom-up approach) and the coordination and cooperation of the interested 
parties.  For example, the inclusion of SHM into LCM requires supporting 
public policy as much as it requires new innovative sensor technology and the 
methods that can leverage structure specific data.   

This chapter was driven in part by the invitation to contribute to a new book 
entitled “The Encyclopedia of Structural Health Monitoring” scheduled for 
publication in January 2009 and edited by Professors Christian Boller, Fou-Kuo 
Chang, and Yozo Fujino.  The intent of this 2000 page, 3 volume encyclopedia 
is summarized from its preface as follows: 
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The Encyclopedia of Structural Health Monitoring is intended to provide all 
the background information required to understand and apply structural health 
monitoring, and to set out the basis of configuring structural health monitoring 
systems. This multi-volume work will provide an invaluable guide and reference 
for all engineers, engineering managers and scientists active in the field of 
structural design, operational management and maintenance. Application areas 
range through aerospace; road, rail and sea transport; heavy machinery; and 
all types of civil infrastructure, including specialist subjects  such as land fills 
or disaster (i.e. earthquake) management. 

. 
The specific invited chapter contribution was to be titled “Maintenance 
Principles for Civil Structures Using Structural Health Monitoring (SHM)” 
(Frangopol and Messervey, 2008a) with the intent of investigating how to plan 
for, utilize, and optimize SHM data in a life-cycle context.  This thesis chapter 
was also largely motivated by the participation in multiple working groups, 
symposia, and special sessions dedicated to the topic and whose results have led 
to the presentation of three keynote papers/lectures.  The main ideas from the 
compilation these efforts, as well as other ideas, are presented herein.   

4.1 Introduction 
 

The use of Structural Health Monitoring (SHM) in civil infrastructure is 
increasing as sensors become smaller, more affordable, less power consuming, 
and wireless.  Although bridge managers and engineers may have access to a 
wealth of structural response data, more research is required on how to 
effectively manage, process, and utilize it.     

To best leverage the potential of SHM technologies, several considerations 
and actions must be taken that are in contrast to how monitoring is currently 
most often employed.  Instead of a bottom-up reaction to specific deficiency, a 
top-down approach to the development of monitoring systems within a life-
cycle context is necessary.  Such an approach requires the adoption of methods 
and metrics suited for probabilistic data and capable of quantifying the benefit 
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of increased levels of safety over time.  For an existing structure, this implies a 
reliability-based life-cycle management approach with the inclusion of risk.  For 
a new structure, this implies performance-based and durability-based design.  It 
must also be considered that the design, management, and use of civil 
infrastructure involves a unique composition of interested parties that may 
compete for resources or have conflicting interests although they share the same 
goal of safe and efficient structures.  To ensure the best use of limited resources, 
common metrics, methodologies, and means of communication must be agreed 
upon.  Despite the pressing need for new innovations, the integration of 
structural health monitoring will likely be incremental.  As such, how these 
technologies can benefit existing methods while serving as a catalyst for future 
change is of interest. 

4.2 Consideration of Funding, Ownership, 
Responsibility, and Public Policy 
 

This section serves as a placeholder or reminder that SHM systems must 
grow within an environment of established codes and guidelines.  As important 
as developing the technology itself, parallel efforts must occur in public policy 
and code revision efforts to establish the conditions to leverage the legal use of 
the technology once developed.  Because codes may be eligible for revision at 
5, 10, or 15 year intervals, it is important these efforts begin as soon as possible.   

Bridge ownership can vary across levels of government and political 
structures.  In the U.S. these divisions are generally federal, state, county, and 
local.  In contrast, in several European countries, highway bridges are owned 
and maintained by a private for profit organization funded through tolls.  Other 
bridges fall under their respective municipalities.  Such divisions in ownership 
create the potential for differences in standards, conduct, and clarity with 
respect to bridge inspections and maintenance.  Following the I35W 
Minneapolis Bridge collapse, the internet news portal MSNBC initiated a series 
of special reports on the state of the nation’s bridges (Dedman, 2008a).  One of 
these reports highlights how the issue can become complex.  In this report, 
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several officials at the state level described how bridges at the local level were 
not their concern because the structures were owned by the local municipalities.  
However, federal regulations clearly specify that although the task of bridge 
inspections can be delegated, the responsibility for their completion cannot be 
delegated.  Another concern for local authorities is that funding and inspector 
training for each small district is hard to obtain and possibly inefficient. 

The report (Dedman, 2008a) goes on to highlight that enforcement of 
existing guidelines is also a difficult task.  In the United States, although federal 
officials are aware of many practices that violate federal regulations, no penalty 
has been levied on any particular state in over 15 years.  The concern is that any 
withholding of federal funds would only worsen the problem.   Restrictions on 
funding also complicate the matter.  Although experts attest that well allocated 
maintenance funding would significantly reduce life-cycle costs, states and 
consequently local governments in the United States were until recently 
precluded from using federal funds for bridge maintenance purposes.  Instead, 
highway gas tax funds were restricted for new bridge construction and the 
replacement or rehabilitation of existing bridges (Roberts and Shepard, 2002).  
As a result, a large number of local governments and several state governments 
are only within the last several years beginning to implement bridge 
maintenance programs.  Although it is not the role of a monitoring program to 
address these issues, it is important to understand the political and funding 
structure the program must fit within.  Additionally, agreements on how to 
classify monitoring (as part of maintenance or rehabilitation) may directly 
impact what types of funds are available. 

4.3 Strategic Level Adoptions in Concert 
 
Solving a multi-faceted and multi-disciplinary problem requires the 

establishment of common methods, metrics, and benchmarks.  These actions are 
necessary to facilitate communication and to enable different people to work on 
small parts of a larger problem.  One of the challenges in the selection of 
common methods, metrics, and benchmarks specifically for SHM is that each 
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structure and each scenario is unique.  Optimal solutions will vary for different 
monitored parameters (mechanical, physical, or chemical), duration of 
monitoring (short term, mid term, or long term), type of monitoring (local vs. 
global measurements), type of structure (new construction or existing 
construction), and type of construction material (steel, concrete, timber, etc.) 
(Glisic et al., 2007).  Testament to this concept, a US-China Joint Working 
Group has recently formed a collaborative research program in integrated 
structural health monitoring which identifies the need for and selection of “test-
beds.”  Test beds are selected structures for monitoring experiments with agreed 
upon performance metrics that capture what the engineering community cares 
about.  The summary of this agreement (Glaser et al., 2007) states: 

 
Test-beds should be selected to exhibit as many of these scenarios (different 

environments) as possible. For example, test-beds as a minimum should consist 
of one long-span bridge over salt water, one short-span bridge in a city 
surrounded with electromagnetic and other forms of interference, and one mid-
span bridge in a remote location with no in-situ electrical supply. The test-beds 
should be located in locations with harsh environments, including ones with 
high winds, extreme temperature changes, high heat and humidity, and acid or 
alkaline exposure. Bridges of different materials and ages should also be part of 
the test-bed.  

 
A second challenge in the selection of common methods, metrics, and 

benchmarks for SHM applications is the diversity and number of interested 
parties related to the safe performance of the civil infrastructure.  From public 
officials, to infrastructure users, and owners, although the goal of optimally 
designed and managed structures that ensure public safety over their useful 
lifespan is most likely not disputed, determining how to achieve this goal is 
more difficult.  Differences in methods, assessment metrics, competing interests 
and competing demands quickly complicate the discussion.  Figure 4.1 depicts 
these interested parties.   
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Figure 4.1. Interested parties with potentially conflicting interests with respect to 

bridge management (adapted from Frangopol and Messervey, 2008d). 
 
For example, in an environment of limited resources it is likely that 

researchers would request funding to develop more efficient management 
techniques whereas infrastructure managers would prefer using this funding to 
repair existing defects.  The trucking industry desires heavier allowable truck 
weights to improve productivity whereas bridge managers desire lower limits to 
reduce wear and tear on their structures.  Public officials are responsible for 
public safety but must also accept some level of risk as its elimination is not 
feasible or affordable.   

Because monitoring technologies enter this environment of limited resources 
amongst interested parties with potentially conflicting objectives, coordinated 
and synchronized actions (adoptions-in-concert) are necessary to facilitate 
synergistic and efficient solutions.  Technologies must be adopted by and work 
within the programs utilized for asset management.  In turn, asset management 
must be supported by and exist within the broader context of performance-based 
engineering.  Instrumental and inherent to the entire hierarchy is that resources 
are optimized, safety is assured, and condition is adequate.  Figure 4.2 shows 
such a hierarchy which has been adapted from the call for the mini-symposium 
on Integrating Health Monitoring and Life-Cycle Management of Bridges and 
Highways at IABMAS-08.  Added to the figure are key players at each level, 
several end products or responsibilities, and four common links required to 
achieve synergy between the interested parties.  The added linkages are 
common code provisions and performance metrics. 
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Figure 4.2.  Paradigm for the integration of health monitoring into the life-cycle 
management of bridges and highways (adapted from the October 30th, 2007, call 

for the mini-symposium on Integrating Health Monitoring and Life-Cycle 
Management of Bridges and Highways at IABMAS-08 (Mini-Symposium 

Organizers: Aktan, A.E., Meng, X., Klatter, L., and Furuta, H.). 
 
Although easily stated, the realization of such a paradigm is not as easily 

achieved.  Differences in design methods, assessment techniques, management 
programs, legal systems, and political processes are important when answering 
the question on how to best integrate health monitoring.  Because the creation 
and implementation of this paradigm will have to span these differences, an 
introspective analysis within the engineering community is appropriate to agree 
on several key rules and standards.  Particular attention is needed to standardize 
and include risk in the calculation of life-cycle costs and as a metric to compare 
alternatives that do and do not employ SHM.  Also necessary is a common 
period of time (warranty period) over which to calculate maintenance costs for 
newly constructed structures.  In doing so, solutions with and without 
monitoring can be fairly compared.  Minimum performance thresholds need to 
be agreed upon to indicate when corrective actions are required.  Lastly, the 
“test bed” concept should be implemented at the highest possible level (national 
or international) for the formation of focused data collection efforts.  Although 
much information is required to update codes and to better understand in-
service structures, it is likely that specific failure modes across certain types of 
bridges are of greatest concern at this point in time.  Focusing research funding 
and effort on such identified problem areas and by making the data available to 
different researchers for benchmarking, will result in more coordinated, 
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efficient, and timely solutions.  One very encouraging program recently created 
for this purpose is the Long Term Bridge Performance (LTBP) program 
(FHWA, 08)  The LTBP program is a US $25 million 20 year research effort 
funded by the FHWA to collect, document, and make available high-quality 
quantitative performance data on a representative sample of bridges. The 
objective of the program is to increase knowledge on bridge performance and 
degradation, develop better design methods and performance predictive models, 
and support advanced decision-making tools for bridge management.  

4.4 Structure Level Frameworks for the Inclusion of 
SHM 
 

Figure 4.3 introduces a framework to utilize structural health monitoring to 
improve life-cycle management models by better defining random variable 
input parameters.  The idea is analogous to the common practice of using modal 
analysis to validate or improve a finite element model.  Figure 4.3a depicts a 
typical profile of the reliability index for structure that deteriorates over time.  
Figure 4.3b shows a framework to improve the modeling of the reliability index 
profile using SHM.  The framework begins with selecting and modeling critical 
failure modes using performance functions.  A sensitivity analysis of random 
variables in these equations determines which random variables are most critical 
to monitor via SHM.  This allows for the development of a task-oriented 
monitoring solution.  In this initial framework, the monitoring solution could be 
permanent or could also be specific test with mobile equipment brought to the 
site.  Once collected, SHM data is utilized to validate or improve the random 
variable input parameters.  The LCM model is adjusted and the reliability index 
is recalculated.  Figure 4.3c depicts a case in which SHM validation results in a 
downward adjustment of the initial reliability index and a shorter predicted 
lifespan.  Because the initial calculation of the reliability index incorporates 
actual structural data, the standard deviation of the PDF associated with the 
initial reliability index is decreased indicating a more accurate assessment of the 
actual structural behavior.  This process would not require a permanent 
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monitoring solution but certainly does not preclude one.  In some cases, a SHM 
update or validation could be as simple as positioning a known load on the 
structure of interest and recording strain values. 
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Figure 4.3. Framework to use SHM to validate a LCM model of the reliability 

index (adapted from Messervey et al., 2006) 
 
A natural extension of the previous example is to consider multiple 

validation points over time by incorporating a SHM inspection plan or by a 
permanent monitoring system as shown in Figure 4.4.   
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Figure 4.4.  Framework to incorporate periodic or continuous monitoring (adapted 

from Messervey et al., 2006) 
 
The framework requires input and interface with the asset manager and has 

the potential to provide him or her with a powerful management tool.  SHM 
allows for the establishment of performance flags.  These could easily be 
critical levels of strain, rotation of a joint, corrosion initiation, crack width, or 
critical loads that require inspection or maintenance.  Once indicated, these 
flags provide actionable information on a specific area of interest for the asset 
manager.  Concurrently, structural data can be utilized to validate whether or 
not the structure is performing as predicted.  The structure and updating process 
require no action until the LCM model and SHM data diverge.  At this point, 
random variable input data is modified, the LCM model is updated, and the 
asset manager is provided with an updated optimization of reliability, cost, 
lifespan, and maintenance options.  Figure 4.4a depicts a case in which the 
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deterioration rate of a structure is updated resulting in a longer predicted 
lifespan.  SHM also provides the ability to validate maintenance actions.  Figure 
4.4c depicts an increase in the reliability index due to maintenance and a longer 
predicted lifespan.  Each time structural performance data is introduced into the 
model via SHM, uncertainty is changed and confidence in the model and its 
predictions are increased.  As such, the framework becomes a “living” process 
and could readily incorporate data from non-destructive evaluation testing, 
visual inspections, or the inclusion of additional sensors or random variables. 

4.5 Top-Down Approach to the Design of SHM 
Systems 

 
This section presents key concepts in the formulation of monitoring 

strategies.  Here, a top-down approach is developed which is in sharp contrast to 
how SHM is often utilized.  Currently, monitoring is generally used as a 
bottom-up, diagnostic tool in response to an existing problem or defect or to 
conduct system identification for a finite element model.  Equipment is brought 
to the sight, measurements are recorded, the equipment is removed, and the data 
is studied.  In time, as technologies, metrics and methods are developed that are 
convincingly cost-effective, the use of permanent (or systematic) monitoring 
systems will become more common.  To ensure these assets are employed 
effectively, they need to be applied at the most critical structure, at the 
appropriate location, and at the right time.   

The formulation of a monitoring strategy should consider (i) historical 
failures and current assessment of the type of structure of interest; (ii) how the 
structure fits within a larger network; (iii) the type of measurement desired 
(global vs. local) and what sensing mechanisms are most appropriate; (iv) what 
types of uncertainty are present and how they will be modeled; (v) how assets 
will be prioritized at the structure level with respect to member importance, 
system effects, and time; and (vi) the optimization of sensor placement and 
usage with respect to time and spatial effects.  Across these considerations, cost 
effectiveness is imperative. Because maintenance demands will likely outpace 
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available resources for the foreseeable future, infrastructure managers will 
likely not invest in monitoring unless it either becomes code driven or there is a 
return on their investment. Otherwise, money spent on monitoring will simply 
reduce the funds available for maintenance and repair. 
 
4.5.1 Consideration of Past Failures and the Current Condition 
of Existing Structures 

Historically, albeit unfortunately, structural failures and collapses have acted 
as the catalysts that have shaped design codes, construction methods, and 
management practices. Several notable studies have been conducted in this area 
and serve as an excellent resource. Matousek and Schneider (1976) studied 800 
reported failures and errors in the field of structural engineering across several 
classes of structures. Stewart and Melchers (1997) summarized parts of a 
number of studies involving structural failures. Blind (1983) analyzed initiating 
events and causes for dam failures. Bertrand and Escoffier (1987) studied the 
failures of offshore structures; Anderson and Misund (1983) studied the 
initiating events for the failures of pipelines; and Scott and Gallaher (1979) 
studied the failure of components and systems in nuclear power plants. A recent 
and applicable study to one of the most pressing needs today is a 2004 analysis 
of the reasons for reconstruction across 1691 bridges in Japan (Joint Task 
Committee, 2004). The results of this study are shown in Figure 4.5.  Figure 
4.5a details the primary reason for reconstruction.  Serviceability concerns and 
the upgrade of highway routes account for the majority (49%).  Damage and 
strength concerns account for 34% with most problems arising in the 
superstructure which is most subjected to environmental exposure and traffic 
load effects.  Figure 4.5b details the primary cause of specific to the 
superstructure damage cases of figure 4.5a.  Problems with the deck (48%) are 
about even with problems of the supporting girders (48% for steel and concrete 
girders combined).  However, it is noted that problems specific to reinforced 
concrete account for 87% of the failures.  From these results, it appears that 
monitoring strategies for concrete may be of particular interest for bridge 

92 



Chapter 4 Integration of SHM in Asset Management in a Life-Cycle Perspective 
 

managers as slab failure and concrete spalling/cracking accounted for most of 
the superstructure failures. 
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Figure 4.5.  Study of 1691 recent bridge reconstruction projects in Japan: (a) 
reasons for reconstruction for all bridges and (b) for the bridges reconstructed due 
to superstructure damage, the primary cause of that damage (adapted from Joint 

Task Committee (2004)). 
 

To continue investigating the topic of bridge failures, the author conducted a 
study of reported bridge failures in the calendar year 2006.  Although gained 
from press releases, uncorroborated, and likely to contain errors, the 
information is interesting nonetheless and was reported in Frangopol and 
Messervey (2007c).  Table 4.1 summarizes the results of this study from which 
several trends can be observed in the data.  First, bridge problems are not 
country specific.  Second, bridge failure ages seem to be polarized.  Masonry 
structures (typically abutments failing due to pier scour) are all greater than 100 
years of age and reinforced concrete structures (typically due to cracking and 
corrosion induced reinforcement debonding) cluster around 40 years.  Third, 
bridge collapses can be lumped into four general categories, flood related 
failures, collapses during construction, collapses due to design and/or 
construction errors, and collapses due to maintenance neglect.  In only two 
cases, both construction related collapses, were no problems identified and 
reported before failure.  Instead, the cause of collapse was most often 
documented well in advance and was under observation or awaiting funding.  
Also of interest, all flood related casualties reported were the result of 
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overloading coupled with high water.  These events most often occurred when 
people and vehicles gathered on the bridge to observe the water passing 
underneath as the support structure eroded.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Date Location Event Description Online News Source Structure Age (yrs) Casualties

17-May-06 Minxian, China In service
high water collapse

China Economic Net
accessed 19 December, 2006 34 0

30-May-06 Meherpur, India Collapse During Construction United News of Bangladesh
accessed 14 January, 2007 New 4

7-Jun-06 Shandong, China Stone arch collapse during construction  
Unstable groundwork in wet conditions

China SD News
accessed 14 January, 2007 New 5

17-Jul-06 Gallaudet University, 
Washington DC

Sudden collapse of a large reinforced 
concrete pedestrian overpass, age, 

cracking, maintenance neglect

RidorLIVE
accessed 19 December, 2006 30 0

20-Jul-06 Kala Amb, India
In service high water collapse, 

maintenance neglect, upstream mining 
resulted in gushing water

Tribune News Service
accessed 20 December, 2006 46 4

23-Jul-06 Quanzhou, China High water collapse of an ancient 
pedestrian bridge

People's Daliy Online
accessed 20 December, 2006 800 0

8-Aug-06 Mardan, Pakistan
In service collapse, bridge overcrowed 
by vehicles and pedestrians observing 

high water

BBC News
accessed 14 January, 2007 Not Reported 44

5-Aug-06 Karachi, Pakistan
Sudden collapse of a railway bridge due 
to abutment scour, problem identified in 

2003, high water

Dawn Internet News
accessed 19 December, 2006 100 0

29-Aug-06 Xiamen, China Collapse during construction AboutXinjiang Online
accessed 19 December, 2006 New 0

6-Sep-06 Yekaterinburg, Russia
3RC beams collapse during construction 

of automobile bridge possible design 
error

Wikipedia
accessed 20 December, 2006 New 0

30-Sep-06 Laval, Canada Sudden in-service collapse of a
 3-lane highway overpass

CBC News
accessed 19 December, 2006 36 6

5-Nov-06 Shimoga, India
In service high water collapse

age, severe cracking, increased traffic 
loading

The Hindu
accessed 19 December, 2006 38 0

2-Dec-06 New Delhi, India
Footbridge overpass being 

deconstructed collapses as train passes 
underneath, vibration 

Express News Service
accessed 19 December, 2006 150+ 34

13-Dec-06 Guinobatan, Phillipines
In service high water collapse

Overloaded by relief trucks after 
typhoon

Science Daily
accessed 20 December, 2006 Not Reported 0

Table 4.1. Several reported bridge collapses in 2006. 

Although past failures certainly provide insight, the current condition and 
classification of existing structures must also be considered when developing a 
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monitoring strategy.  In the US, the National Bridge Inventory (NBI) provides 
statistics on bridges by bridge type, classification, location, age, and current 
condition.  Statistics are also available that detail replacement, rehabilitation, 
and new construction projects as part of the Highway Bridge Replacement and 
Rehabilitation Program (HBRRP).  Combining this data better enables the 
design of monitoring approaches for assessing existing structures as well as 
those newly constructed.  Using information from the NBI as of 2006, Figure 
4.6 details (a) the makeup of the NBI by bridge type, (b) the makeup of 
deficient brides by type, (c) the makeup of newly constructed bridges (2003 and 
2004), and (d) the makeup of bridge replacement and rehabilitation projects 
(2003 and 2004).   
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Figure 4.6. National Bridge Inventory (NBI) statistics of interest for developing 

national level monitoring priorities. (a) NBI bridge makeup, (b) deficient bridges 
by type, (c) newly constructed bridges (2003–2004), and (d) replaced and 

rehabilitated bridges (2003–2004). 
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From these statistics one can conclude that (a) most of the existing bridges in 
the United States are concrete, (b) steel bridges represent the largest proportion 
of deficient bridges, (c) most new construction is concrete, and (d) most 
rehabilitation projects are steel.  Because steel bridges are generally older, it is 
not surprising that these bridges are disproportionately deficient.  Additionally, 
since steel bridges make up the bulk of rehabilitation projects, it is reasonable to 
assume that many of these older bridges are located in urban areas where new 
construction is difficult without significantly disrupting traffic flow.  From these 
statistics, if viewing monitoring from the perspective of forming national 
priorities, effort should focus on concrete SHM for new construction and upon 
steel SHM for structures being assessed.    
 
4.5.2 Consideration of Structures within a Network 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bri

 
Figure 4.7. An existing bridge network near Denver, Colorado (table adapted from 

and figure reproduced from Akgul and Frangopol, 2003). 

dge Name
Number 
of Spans

Bridge Length 
(m) Year Built

Average Daily 
Truck Traffic

P ressed concrete 
E -MU 1 34.1 1994 810
E -LA 2 77.9 1983 450
E -DM 2 44.5 1990 390
E -QI 2 74.1 1995 1,335
E -LY 3 74.3 1985 1,610
E -NM 2 64.6 1991 2,955
E -MW 2 72.7 1987 230

St l I-Beam bridges
E -FK 4 69.2 1951 1,370
E -FL 4 54.0 1951 765
E -QI 5 82.3 1953 890

St  plate girder bridges
E -LE 4 68.6 1972 992
E -HS 4 64.5 1963 5
E -HR 4 64.0 1962 306
E -HE 4 67.7 1962 1,290

* a pted from [22]
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Bridge Name
Number 
of Spans

Bridge Length 
(m) Year Built

Average Daily 
Truck Traffic

Presstressed concrete 
E-16-MU 1 34.1 1994 810
E-16-LA 2 77.9 1983 450
E-16-DM 2 44.5 1990 390
E-16-QI 2 74.1 1995 1,335
E-16-LY 3 74.3 1985 1,610
E-16-NM 2 64.6 1991 2,955
E-16-MW 2 72.7 1987 230

Steel I-Beam bridges
E-16-FK 4 69.2 1951 1,370
E-16-FL 4 54.0 1951 765
E-16-QI 5 82.3 1953 890

Steel plate girder bridges
E-17-LE 4 68.6 1972 992
E-17-HS 4 64.5 1963 5
E-17-HR 4 64.0 1962 306
E-17-HE 4 67.7 1962 1,290

* adapted from [22]
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Rarely is the management of a structure considered in isolation.  Whenever 
possible, inspections, assessments, and maintenance actions should be taken in 
context of where the allocated resources will provide the most benefit.  For a 
transportation network where bridges serve as critical nodes, analysis requires 
consideration of network connectivity, user satisfaction, and network reliability 
(Liu and Frangopol, 2006a).  Monitoring can be allocated to the most important 
bridge within a network with respect to any of these three metrics or to a bridge 
with known defects.  Figure 4.7 shows an existing bridge network near Denver, 
Colorado to highlight some of the necessary considerations.  Within this 14 
bridge network, bridges are of different types, ages, span lengths, and traffic 
characteristics.  Each of these differences, to include other factors such as 
political importance or historical/cultural value, can influence monitoring 
priority. 

An appropriate starting point to establish bridge importance is to relate 
individual bridge reliability to the reliability of the bridge network.  The 
reliability importance factor (RIF) for any bridge is defined as the sensitivity of 
the bridge network reliability βnet to the change in the individual bridge system 
reliability βsys,i  as (Liu and Frangopol, 2005; Liu and Frangopol, 2006a): 

 

isys

net
iRIF

,β
β

∂
∂

=             (4.1) 

 
Using this metric, the bridge for which changes in performance have the largest 
impact on the reliability of the bridge network can be identified for monitoring 
priority.  Assuming monitoring reduces the probability of failure of any 
associated bridge component or system and likewise increases the network 
reliability index, a multi-objective approach can be utilized to optimize bridge 
network maintenance as presented in Liu and Frangopol (2006b).  Such an 
approach also enables the investigation of the application of a single common 
maintenance application, traffic weight increase, or mobile monitoring 
instrument to the performance of the network. 
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4.5.3 Developing Monitoring and Analysis Strategies: Right tool 
for the right task 

Monitoring strategies are broadly categorized in two groups, global and 
local.  Both provide different types of information and in general support 
different analysis types.  Figure 4.8 depicts global and local monitoring 
strategies, the type of information collected, and the associated measurement 
types.   
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Figure 4.8.  Common monitoring strategies for civil infrastructure (adapted from 

Rafiq, 2005) 
 
Selecting an appropriate strategy might be dictated by the structure, type of 

analysis, or both.  For example, one may be limited to a global monitoring 
approach when accessibility to specific parts of the structure is impossible.  
Conversely, one may desire global monitoring methods when working with an 
analysis that creates an equivalent structure.  A common example would be the 
characterization of the stiffness, or modal characteristics in a finite element 
model.  For this, accelerometers would be an appropriate instrument.  This 
would not necessarily be the case when analyzing a specific structural failure 
mechanism such as flexure, shear, fatigue, or corrosion.  In this case, 
information would be desired about member geometries, material properties, 
loads being imparted on the structure, and environmental effects.  Figure 4.9 
shows several common SHM instruments for these types of measurements.  It 
should be noted any such listing is typically outdated before published due to 

98 



Chapter 4 Integration of SHM in Asset Management in a Life-Cycle Perspective 
 

rapid advancements in the field.  Two state of the art studies dedicated to sensor 
types for SHM applications include Rafiq (2005), and Lynch (2007). 
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Figure 4.9.  Common monitoring instruments for civil infrastructure (adapted 

from Rafiq, 2005) 
 
With respect to novel monitoring strategies, three trends are quickly 

highlighted.  The first trend is the fabrication of sensor-embedded materials 
with application specific acquisition systems and data analysis software.  One 
research project in this area that the author is working on is the EU project 
POLYTECT, “Polyfunctional Technical Textiles against Natural Hazards.”  
This project is developing sensor-embedded textiles at the industrial level for 
geotechnical and masonry applications.  Project details can be found at 
www.polytect.net.  The second trend targets simplifying the analysis of 
structural assessment and performance prediction by developing algorithms 
based only upon a statistical analysis of the response data itself (Nair and 
Kiremidjian, 2007).  Such methods conduct statistical pattern recognition in 
search of a damage sensitive feature.  One such method is based on the 
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Mahalanobis distance between the undamaged state and various damage states 
of a structure of interest where the data are modelled as a Gaussian mixture.  
This approach is outlined in Kiremidjian et al. (2008) and is showing to be very 
promising.  Such methods are desirable because of their computational 
efficiency making them particularly suitable low power demand wireless 
monitoring solutions.  The last highlighted trend is the monitoring of multiple 
structures or spans with one monitoring asset.  For the foreseeable future, it will 
not be possible to allocate monitoring systems across all bridge structures.  
Even for a single structure, the optimal location for sensor placement is 
uncertain.  This is especially true for bridges with multiple identical spans.  
Although a theoretical analysis can provide likely optimal locations, it is 
typically a structural irregularity due to member fabrication differences, 
construction error, or differential settlement that will cause one span to be 
critical.  A promising approach and area of research is how to employ one 
monitoring asset to gain a general idea of structural performance that allows the 
development of a more focused monitoring effort (Fujino, 2008).  In Japan, this 
is occurring with a railcar instrumented with accelerometers that collects data 
periodically across railway bridges.  Changes in the vibration signature of the 
bridges crossed can serve as a damage indicator.  For a multi-span highway 
bridge structure, the same concept is being investigated to seek irregularities 
between similar spans as well as changes over time with the use of an SHM 
instrumented car.  The advantage is that one car can quickly obtain information 
over a large number of structures.  The disadvantage is of course the generality 
of the data.   

 
4.5.4 Consideration of Structure Level Asset Prioritization with 
respect to Member Importance, System Effects, and Time 

At the structure level, monitoring must be allocated to the most important 
members, for the critical performance functions, to characterize the most 
significant random variables, at the appropriate point in time.  For structural 
components (such as bridge decks) and individual members (such as girders), 
how these elements perform within the context of the larger structure will 
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determine their importance with respect to monitoring.  For elements arranged 
in series where the failure of any one member or element leads to the failure of 
the larger system as shown in Figure 4.10a, the weakest member, or member 
with the highest probability of failure (e.g., pf = .001), member #1 is most 
important.  Conversely, if members are arranged in parallel, such that the failure 
of one member does not lead to the failure of the larger system, than the 
strongest member with the lowest probability (e.g., pf = .0002), member #3 is 
most important.  Of course, the degree of correlation between the failure modes 
of elements in Fig. 2, affects the system failure probability. Therefore, failure 
mode correlation has to be accounted in establishing monitoring priorities. 

 
 

(a) (b)

1 2 3

pf = .001 pf = .0005 pf = .0002 

1
pf = .001 

2
pf = .0005 

3
pf = .0002 

(a) (b)

1 2 3

pf = .001 pf = .0005 pf = .0002 

1
pf = .001 

2
pf = .0005 

3
pf = .0002 

1
pf = .001 

2
pf = .0005 

3
pf = .0002 

 
 
 
 
 
 

Figure 4.10. System Analysis of Elements in (a) Series and (b) in Parallel 
 
Varying rates of deterioration may also affect monitoring priorities or when 

monitoring is needed.  Figure 4.11a depicts the reliability profiles of two 
members arranged in series.  Member #1 deteriorates more rapidly than member 
#2.  As such, monitoring priority would first be given to member #2 until the 
reliability indexes intersect at point X after which priority would shift to 
member #1.  In contrast, if these same two members are arranged in parallel as 
shown in Figure 4.11(b), monitoring priority would first be given to member #1 
and then to member #2 after the intersection of the reliability profiles.  In both 
cases, the concept of monitoring the weakest element in series and the strongest 
element in parallel remain the same but the critical element changes over time 
due to varying deterioration rates.  Although fairly intuitive for different bridge 
components or components made of different materials, this could also find 
application amongst like elements.  An example could be exterior steel girders 
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being subjected to a higher corrosion rate than interior girders due to a greater 
exposure to de-icing salts. 
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Figure 4.11. Time variant system monitoring of elements in (a) series and (b) 
parallel 

 
Such an analysis could also be utilized to answer the question of when to 

monitor.  Again using Figure 4.11, if a minimum reliability threshold is 
established, one could conclude that monitoring would be appropriate on 
member #1 at the time corresponding to Point Y in series and on member #2 at 
Point Z in Parallel (given perfect information).  In the absence of perfect 
information, Monte Carlo simulation of the model parameters can be utilized to 
estimate the earliest possible crossing of the minimum reliability threshold.  
This would be appropriate for a monitoring system with high operational costs 
that can be turned on or off, or for a non-permanent monitoring solution that 
must be scheduled. 

 
4.5.5 Consideration of Uncertainty 

The goal of monitoring is to reduce the uncertainty associated with critical 
loading and structural parameters.  To maximize the benefit of SHM, the type of 
uncertainty present and how it affects what is being monitored should be 
determined.  The contributors to uncertainty in civil structural systems are 
discussed by Frangopol (2007).  As previously defined, uncertainty can be 
partitioned in two broad categories, aleatory and epistemic where aleatory 
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uncertainty describes the inherent randomness of the underlying phenomenon 
exhibited in the observed data whereas epistemic uncertainty deals with 
imperfect models of reality due to insufficient or inaccurate knowledge (Ang 
and Tang, 2007).  Both types of uncertainty are of interest as related to 
infrastructure assessment but require different treatment.  In terms of prediction, 
one must focus upon epistemic uncertainty as the future randomness associated 
with aleatory uncertainty cannot be reduced.  Hence, during operation, it would 
be reasonable to envision that monitoring effort would focus on key random 
variable input parameters (epistemic) such as the those random variables used to 
predict the rate of corrosion.  However, with respect to system identification, 
aleatory uncertainty can be very significant.  Indeed, reducing epistemic 
uncertainty (modelling error) may not be possible without capturing pertinent 
aleatory uncertainty.  For example, thermal stresses (aleatory) can greatly 
influence a system identification model (epistemic).  Unless actual temperatures 
are catalogued and considered in the analysis, system identification models may 
be inaccurate.  An example of using SHM captured thermal stresses to improve 
system identification modelling is provided in (Catbas et al, 2007).  In this 
work, a comparison of system reliability analyses with and without thermally 
induced stresses shows that the inclusion of temperature significantly decreases 
the component and system reliability indexes.      

 
4.5.6 Measurements: Time and Spatial Effects and the 
Optimization of Sensor Placement 

Closely related to and conducted in parallel with the shaping of a monitoring 
strategy, the type of measurement desired and how to optimally obtain that 
measurement it is an important topic of discussion.  Figure 4.12 demonstrates 
concepts related to measurement types, time, and space.  Figure 4.12a shows a 
cross section of reinforced concrete subjected to chloride attack.  The 
measurement decision is whether to detect the chloride ingress (indicator) or to 
detect the corrosion itself (result).  The economics of the decision are that the 
detection of chloride ingress away from the rebar allows the stripping of the 
upper layer of concrete and its replacement (less expensive repair) as opposed to 
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replacing the entire reinforced concrete beam or deck (more expensive repair).   
Figure 4.12b shows an important distinction between inspections and 
monitoring.  Generally, inspections or NDE testing provides information about 
an entire structure at a point in time whereas monitoring provides information 
continuously at a specific location over time.  To balance this difference, 
inspections must occur at appropriate intervals of time and sensors must be 
placed at appropriate intervals in space. 
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Figure 4.12.  Measurement considerations: (a) in a RC deck or beam detecting 
ingress vs. detecting corrosion itself and (b) spatial and temporal differences 

between inspections and monitoring. 
 

Once the type of data desired is determined, the question of how to obtain 
the data in the most cost-effective manner becomes important, which is 
currently an ongoing, open field of research.  The type of sensor selected and 
the density of the associated network are dependent upon sensor cost, sensor 
performance, and the uncertainty associated with the measurement of interest.  
As these are competing criteria, multi-objective optimization is an appropriate 
method for the design of a sensor network as demonstrated in (Marsh and 
Frangopol, 2008).  In general, the idea is to record enough information to 
extrapolate to other parts of the structure in a manner that is statistically 
significant.  For example, on a truss structure with 100 members, knowledge 
that one is in perfect condition provides a certain level of confidence.  
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Knowledge that ten are in perfect condition provides a greater level of 
confidence.  The task is to balance the value of increased information vs. its 
associated cost.  Another promising method specific to vibration measurements 
is demonstrated in (El-Borgi and Choura, 2005).  In this work, a program 
named FEMTools is utilized to create simplified measurement schemes that can 
be simulated to compare the ability of different sensor configurations to capture 
the response of a finite element model.  Through this process, the program also 
identifies “maps” or zones sensitive to the measurement of interest on the 
structure allowing the number of sensors required for accurate measurement to 
be reduced.  Combining the idea of simulation and sensor reduction with life-
cycle multi-objective optimization techniques is an area for future study. 

 

4.6 Estimating the Utility of Monitoring Solutions in a 
Life-Cycle Context 

Researchers and practitioners globally are exploring how to best encourage 
and facilitate the use of SHM and LCM methods.  From discussions, working 
groups, and presentations, ideas generally fall into the following categories: 
 
Required by Code: Working discussion groups in Europe are considering a 
code requirement that construction projects must be submitted with a 100 year 
maintenance plan.  If such a measure were to be adopted, this would be the 
firmest manner to encourage the use of SHM by requiring a life-cycle approach 
for design and management.   
 
Incentivized:  The use of SHM/LCM can be incentivized through tax 
credits/tax breaks or through lower insurance rates if insurance on civil 
structures becomes mandated.  Such an approach has often come up in working 
sessions and usually from Asian members of the group.  Group members that 
have presented the incentivized approach also highlight the advertising value 
available if owners understand and value that they have a technologically 
superior and safer building or bridge. 
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Profitable:  Perhaps the strongest motivation for SHM/LCM methods is if they 
can be shown to increase profit with either constant or improved performance.  
If profitable, the concept is easily adaptable worldwide but the for profit 
argument is typically first on the agenda for group members in the USA. 
 

The optimal solution of how to best encourage and faciliate SHM/LCM is 
likely a combination of the above, e.g. an available/acceptable design 
alternative recognized in the code, with some incentives for those who choose 
to use it, with the likelihood that over time the system will be profitable through 
more optimal management actions.  Against this backdrop, it becomes 
necessary to develop the mathematical framework for the inclusion of SHM 
costs in a life-cycle analysis.    

The minimum expected life-cycle cost with respect to lifetime performance 
is the most widely used criterion for design optimization of a new structural 
system.  The general form of the expected life-cycle cost can be calculated as 
(Frangopol et al. 1997): 

 

FREPINSPMTET CCCCCC ++++=           (4.2) 

 
where CET = expected total cost, CT = initial design/construction cost, CPM = 
expected cost of routine maintenance, CINS = expect cost of performing 
inspections, CREP = expected cost of repairs and CF = expected cost of failure.  
Inclusion of monitoring into this general form results in: 

 

MONFREPINSPMTET CCCCCCC +++++= 000000        (4.3) 

 
where CMON = expected cost of monitoring which is best treated with respect to 
a life-cycle cost as: 

 

REPINSOPTMON MMMMC +++=         (4.4) 
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where MT = expected initial design/construction cost of the monitoring system, 
MOP = expected operational cost of the monitoring system, MINS = expected 
inspection cost of the monitoring system, and MREP = expected repair cost of the 
monitoring system.  The operational cost of the monitoring system would 
include the cost of power (battery or electricity), as well as the costs associated 
with data processing and data management.  The benefit of the monitoring 
system, BMON, is then captured through a comparison of the expected life-cycle 
total cost with and without monitoring by subtracting Equation 4.3 from 
Equation 4.2:  

 
0

ETETMON CCB −=           (4.5) 
 

Unless code-driven and using cost as the criterion, monitoring would only be 
justified if BMON > 0 meaning that monitoring is cost effective.  Although a 
specific monitoring approach may not be designed to directly impact each term 
identified in Equation 4.2, monitoring has the capacity to reduce these costs by 
optimally scheduling maintenance and inspection activities, conducting the 
correct repairs at the correct time, and reducing the likelihood of failure.  It is 
noted that the approach is best suited for a probabilistic analysis (SHM data and 
other parameters are uncertain) that includes risk (inclusion of the cost of 
failure) and which explicitly considers structural safety (use of reliability 
methods).   

4.7 Application 
An application is presented to illustrate the calculation and comparison of 

reliability-based life-cycle calculations with and without SHM.  This example 
built in this application was developed over a series of papers, Messervey et al. 
(2006), Messervey and Frangopol (2007a), Messervey and Frangopol (2007b), 
and Frangopol and Messervey (2007c) that demonstrated monitoring, the 
reduction of uncertainty, and updating in a life-cycle context for use in a time-
dependent structural reliability analysis.  The evolution of the example over 
several papers is presented to highlight modeling choices, assumptions, model 
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limitations, lessons learned by the author, and how it shaped further research 
questions for investigation.   
 
Scenario and Load Condition of Interest:  

Messervey et al. (2006) begins the investigation of the reliability of a short 
span, simply supported, W610 x 101 steel beam bridge subjected to corrosive 
effects over time with respect to the HS-20 truck load as shown in Figure 4.13.  
This study is motivated by any typical short to medium-span, simply supported, 
steel beam/girder highway bridge.  The bridge would likely not be state of the 
art, would be part of a larger network, and the bridge manager might be adverse 
to a monitoring/management solution that was expensive or required much 
oversight.  Perhaps the HS-20 design load for this bridge and the initial traffic 
volume estimate was overly conservative and if this conservativeness can be 
identified, the information could be used to make the best possible resource 
allocations amongst the bridge network and for maintenance and inspection 
scheduling of the bridge of interest.  Within this scenario, the idea is what could 
be done with the least amount of information and with an appropriate level of 
confidence?    

 
 

12.2 m

Strain GaugeCorrosion

12.2 m

Strain GaugeCorrosion

 
 
 
 
 
 
 
 
 

 
4.13. Typical short-span, simply supported, highway bridge subjected to the HS-20 

truck load and corrosion over time. 
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A beam spacing of 2.1 m and concrete deck slab of 0.3 m are assumed 
generating a 15.32 kN/m distributed dead load across the span.  The beam is 
also assumed to be continuously braced (lateral torsional bucking is not 
considered).  The live load selected is the AASHTO HS-20 truck (AASHTO 
1992) positioned slightly off center of the beam to maximize the live load 
moment demand which occurs at the beam’s center as shown in Figure 4.14.   
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Figure 4.14.  Loading condition for analysis 

 
The maximum moment, Mmax, for this loading condition is  
 

mkNM −= 305max            (4.6) 
 

Two performance functions are utilized to investigate the reliability of the 
girder with respect to flexure: 

 

LLDLy MMSfg −−=)1(            (4.7) 

Monitoredy Efg ε−=)2(            (4.8) 

 
Equation 4.7 is a theoretical model of the problem which considers moment 
capacity versus the moment demand.  Moment capacity is calculated as the 
yield stress (fy) multiplied by the section modulus (S) and the moment demand 
considered is simply the dead load (MDL) and live load moments (MLL).  Each 
term is modelled as a random variable.  Equation 4.8 is instead a monitoring-

109 



Thomas B. Messervey Integration of SHM into the LCM of Civil Infrastructure 
 
 
based equation that investigates the reliability by examining the yield stress 
versus the actual stress placed on the structure.  Actual stress is obtained via 
Hooke’s Law which multiplies the modulus of elasticity (E) and the monitored 
strain value (εMonitored).     

 
Deterioration Model:  

The elastic section modulus is decreased over time utilizing Albrecht and 
Naemmi’s (1984) study predicting the depth of corrosion over time as 

where A and B are normally distributed, correlated random 
variables.  In this example, an urban environment is assumed in obtaining 
values of A and B.  Urban environments are more corrosive in nature due to the 
presence of sulphur and nitrogen oxides.  Table 4.2 shows the characteristics of 
the random variables A and B.   

BAttC =)(

 
 

Parameter A B
Mean value, μ 80.2 0.593
Coefficient of Variation, σ /μ 0.42 0.4
Correlation coefficient, ρ A,B 0.68 -

Table 4.2. Descriptors for A and B for predicting corrosion 
propegation in an Urban environment for interior and exterior girders 
(Adopted from Albrecht and Naeemi, 1984)

 
 
 
 
 
 
 
Next, a corrosion pattern at midspan (for analyzing moment) must be 

assumed.  The model assumed follows approaches utilized by Hendawi (1994) 
and Estes (1997) where corrosion extends one quarter of the way up the web at 
center span due to water pooling on the bottom flange of the beam as shown in 
Figure 4.15.  Using this model, cross sectional area, location of the neutral axis 
cg, and elastic section modulus S are calculated as a function of dcorr. 

 

ffw tbptgscrArea +++=           (4.9) 
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Figure 4.15 Corrosion pattern at midspan (adopted from Estes, 1997) 
 
 

For a plastic analysis, the equations for the location of the neutral axis cg and 
the plastic modulus Z are 
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            (4.13) 
 
 

The mean and standard deviation of the elastic section modulus S at any time t 
can be calculated using the Point Estimate Method.  This method accounts for 
correlation between random variables by using weighted probability 
distributions.  A and B are the only random variables in the analyis.  There are 
four possible probability combinations PAB: P++, P+-, P-+, and P-- where + 
indicates mean plus standard deviation and – indicates mean minus standard 
deviation.  The weight assigned to each possibility is (USACE, 1992) 
 

ABBABA PPPP ρ)25.0()5.0)(5.0())(())(( +== −−++      (4.14) 

ABBABA PPPP ρ)25.0()5.0)(5.0())(())(( −== −++−      (4.15) 
 

Table 4.3 shows the results of the Point Estimate Method for the mean and 
standard deviation of the elastic section modulus of a W610x101 beam 
subjected to the corrosion pattern in Figure 4.15 at time t = 30 years by applying 
equations 4.10, 4.11, 4.14, and 4.15.  Calculation of the residuals in Table 4.3 is 
conducted after the probabilistic mean is calculated. 
 

Iteration A B
dcorr 

(micrometers) S cm3
probabilistic 

combinations PAB

residuals using 
probabilistic mean

(A+)(B+) 113.9 0.83 1916.61 2102.40 0.42 192.54
(A+)(B-) 113.9 0.356 382.28 2412.76 0.08 -117.82
(A-)(B+) 46.5 0.83 782.46 2332.53 0.08 -37.58
(A-)(B-) 46.5 0.356 156.07 2457.89 0.42 -162.94

S(30)mean = 2294.8 cm3

S(30)stdev = 334.3 cm3

Table 4.3 Point Estimate Method Results for the calculation of the mean and standard deviation of
                  the section modulus at time t=30
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Figure 4.16 shows the mean value of the section modulus across time as well as 
the mean minus the standard deviation.  It is noted that the uncertainty 
associated with the mean value increases over time.  This progressively 
increasing uncertainty in fact has more of an impact on the calculated value of 
the reliability index than the anticipated decrease in the section modulus itself. 
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Figure 4.16. Deterioration of the elastic section modulus over time  
 
Role of Monitoring, Parameter Descriptors, and Results:  

Any hypothetical example must make assumptions about the role of 
monitoring and the simulated monitoring data created for the example.  Because 
the literature often cites the effect of uncertainty on analysis results, this 
example was designed to investigate the effect on the calculated reliability 
index through the reduction of uncertainty.  This is accomplished by taking the 
deterministic total moment demand of 590 kN-m divided by the predicted mean 
values of the section modulus over time.  The results are hypothetical monitored 
stress values that confirm the structure is deteriorating and being loaded at 
expected values but with a higher degree of certainty.  A coefficient of variation 
of 0.015 is assigned to the simulated monitoring data to account for sensor 
uncertainty.  Commonly accepted values for the coefficients of variation of the 
other random variables are taken from Nowak and Yamani (1995).  Table 4.4 
reports the random variable descriptors for the analysis. 
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Random Variable Distribution type. Mean, 
and Std. Deviation

Coefficient 
of Variation

Source

Yield Stress, fy (MPa) N[386, 42.5] 0.11 Nowak and Yamani (1995)

Elastic Section Modulus, S (cm3) variable with time - calculated
Dead Load Moment, MDL (kN-m) N[285, 14.2] 0.05 Nowak and Yamani (1995)
Live Load Moment, MLL (kN-m) N[305, 78.7] 0.258 Nowak and Yamani (1995)
Elasitic Modulus, E (MPA) N[200, 12] 0.06 Nowak and Yamani (1995)
Monitored Strain Rdg, ε (cm/cm) anticipated mean value 0.015 assumed

Table 4.4. Analysis random variables, descriptors, and sources

 
 
The reliability program RELSYS (Estes, 1997) was utilized to calculate the 

reliability index across time.  This program constructs the reliability profile at 
discrete points in time (e.g. annually) by defining the appropriate resistance and 
load parameters for each step of the analysis.   

 
 
 
 
 
 
 
 
 
 

 
Figure 4.17.  Reliability analysis results. 
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Figure 4.17 shows the results of this analysis, e.g. a time-dependent reliability 
profile over a 75 year period.  Two distinct reliability profiles (with and without 
monitoring) are present and provide one estimate of how the reduction of 
uncertainty can impact the estimation of structural safety over time.   
 
Example Critique:  This example begins an interesting discussion: what is the 
benefit of the reduction of model uncertainty via monitoring?  However, it is 
limited in two important ways.  The first is the treatment of the live load and as 
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such the scope of the analysis itself.  This analysis calculates the reliability over 
time against an invariant but random loading condition, the HS-20 truck.  Live 
load effects are not accounted for which model the effect of multiple loading 
iterations (e.g. traffic).  As such, the model is not reflective of actual traffic nor 
appropriately tied to code required return periods for live loads to conduct an 
appropriate safety assessment. 
 
Inclusion of Bayesian Updating: 

One section of Messervey and Frangopol (2006a) expands upon this 
example by investigating the use of Bayesian updating to combine monitoring 
and non monitoring reliability profiles.  Because there are two estimations of 
the reliability index at any point in time, the question becomes which reliability 
profile should be utilized to make management decisions and to allocate 
resources?  Perhaps, an immediate reaction would be to utilize the monitoring-
based performance function as it captures the actual structural data.  However, it 
could be the case, especially early in the life of the structure or soon after 
monitoring has begun, that the monitoring-based information is not mature or 
not representative of the 25, 50, or 100 year load demands for which the 
structure was designed.  “Non mature” monitoring data would likely result in 
the higher estimation of the reliability index.  However, would the treatment of 
the monitoring-based data change if its use resulted in the calculation of a lower 
reliability index than predicted by the theoretical model?  Since the reliability 
indices of both performance functions are in themselves random variables, 
Bayesian updating may provide an effective method to combine the theoretical 
and monitoring-based data. 

Let the normal distributed random variable X describe the true reliability 
index with a mean and variance of N(θ, σ2) and suppose that monitoring 
eventually provides enough information to describe these parameters.  
Likewise, let the prior distribution of θ be N(μ, τ2) and suppose the theoretical 
model serves as the best estimate for the prior distribution.  Assuming a normal 
distribution, the expected (mean) value and variance of the true reliability index 
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given the observed event of a monitoring value x for the reliability index are 
(Casella and Berger, 2002): 
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where μ represents the theoretical mean, τ 2 the theoretical variance, x the 
monitoring-based mean, and σ 2 the monitoring-based variance.  The theoretical 
parameters (μ, τ 2) are being updated by an observation of monitoring-based 
information (θ, σ 2) where the importance, or weight, of each set of information 
is determined by the respective variances.   
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Figure 4.17. Combined reliability index profile via Bayesian updating 
For this example, the theoretical variance is assumed to be τ 2 = 0.5 (less 
uncertain) and the monitoring-based variance is assumed to be σ 2  = 1 (more 
uncertain).  Applying this approach to the data shown in Figure 4.17 at ten year 
update intervals yields a combined reliability index as shown in Figure 4.18. 

 
Example Critique   

Although this approach shows promise in combining theoretical and 
monitoring-based data, some limitations must be considered.  First, the 
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Bayesian updating process utilized above assumes that the “true” population 
curve is fixed and that each sample observation leads to a closer approximation 
of this curve and the parameters utilized in its modeling.  However, in the case 
of a deteriorating structure subjected to potentially increasing loads, the “true” 
parameters of the structure change over time so this assumption is not correct 
for this application.  Secondly, and as a result of the assumption of fixed “true” 
parameters, the application of Equation 4.17 is in question.  Through this 
equation, the variance of the updated information reduces with each successive 
update.  Hence, each additional sample observation has less and less impact on 
the updated data because the theoretical/updated data becomes less uncertain.  
This can be observed in Figure 4.17 by smaller jumps at each update interval.  
After several updates the combined curve becomes fairly insensitive to 
updating.   

Perhaps more important is the assumptions required for the variability of the 
monitoring and non-monitoring reliability indexes.  Here, τ 2 = 0.5 and σ 2  = 1 
were assumed to demonstrate the concept but had no realistic foundation.  
Empirically through expert opinion, one can assign uncertainty to the estimation 
of the reliability index as done in this example.  Analytically, this is a much 
different concept.  By definition, a reliability analysis accounts for the 
uncertainty of all random variables in the analysis and the result is a single, 
invariant estimation of the reliability index.  In order to achieve variability of 
the reliability index, the parameters within the reliability analysis must be 
random variables themselves.  This case requires multiple iterations of the 
reliability analysis and does result in a distribution of the reliability index.  This 
topic is addressed further in Chapter 6 and is the subject of Ang (2007) in which 
the concept is applied to the failure of the levee system in New Orleans after 
Hurricane Katrina.  

Lastly, and also critically important, is the frequency of updating.  In this 
example, 10 years was arbitrarily selected.  However, had 1 year been selected, 
the combined curve would have very rapidly approached the monitoring based 
curve.  Instead, if 25 years had been selected, the combined curve would have 
varied very little from the theoretically-based curve.  Important in this 
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discussion is the decision of how much time is required for monitoring data to 
become “mature” for highway bridges.  How to account for this specific aspect 
of time in reliability-based analysis is an open question. 
 
Inclusion of Live-Load Effects 

Messervey and Frangopol (2007b) included live load effects and 
investigated the inclusion of an updating scheme based upon monitoring data 
and the statistics of extreme values.  Several live load models are available to 
account for live load effects.  These models account for multiple occurrences of 
a load demand distribution by the number of instances n, or over time.  The live 
load described by Nowak (1993) was the basis for the calibration of the live 
load factors of the AASHTO LRFD Bridge Design Code (1994).  Based on a 
study of 9250 trucks in Ontario, Canada, the main result of this study was a 
series of graphs that related span length, the average truck, the HS-20 design 
truck, and time.  For the current application being developed, the Nowak graph 
for the mean moment at a span length of 12.2 meters and for a 75-year live load 
return period, indicates a factor of 1.75 with respect to the HS-20 truck.  As 
such, the appropriate invariant live load for use in a reliability analysis that 
considers live load effects would be (305 kN-m)(1.75) =  533.75 kN-m.  The 
resulting reliability index would represent the structural safety with respect to 
the 75-year design load for the resistance (capacity) utilized at that time in the 
analysis.      

In some cases, it is desirable to construct the reliability profile over time as 
the structure progresses through its service life using a time dependent 
reliability analysis.  Such an analysis requires the use of the statistics of extreme 
values from which are treated in further detail in Chapter 6.  However, a brief 
introduction is provided here to continue the application.   

The maximum expected value Yn is a random variable and therefore has its 
own distribution.  Equations are available that provide the asymptotic 
transformation of the baseline distribution to that of the maximum expected 
value.  Graphically, the transformation of a baseline normal distribution to a 
Type I (Gumbel) extreme value distribution is shown in Figure 4.18.   
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Figure 4.18. Transformation of a normal distribution to a Type I (Gumbel) 

extreme value distribution for increasing values of n. 
 
The construction of a time dependent live load requires the characterization 

of the average (baseline) truck distribution and the average daily truck traffic 
(ADTT).  Then, the appropriate live load can be calculated at different points in 
time for use in the reliability calculation.  From Figure 4.18 and assuming an 
ADTT of 300 trucks where n = 1 describes the average truck distribution, the 
distribution associated with n = 300 would be appropriate for a reliability 
assessment for the period of one day and n = 3000 would be appropriate to 
assess the reliability for a period of 10 days. 

An average daily traffic of 500 trucks is assumed.  The HS-20 truck can be 
related to the average expected truck (Nowak, 1993).  For this 12.2 meter span 
the coefficient for maximum moment is 0.75 and the coefficient for its standard 
deviation is 0.93.  Using these coefficients, the distribution of the maximum 
moment changes from N(305, 78.7) kN-m for the HS-20 truck to N(228.75, 
73.2) kN-m for the average expected truck.  It is the average expected truck that 
is utilized for the calculation of live load effects based upon the actual number 
of trucks crossing the bridge and this distribution becomes the baseline 
distribution for n = 1.  The mean and standard deviation of the Type I Gumbel 
EVD is defined from this baseline (normal) distribution by (Ang and Tang, 
1984) 
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where γ = .577216 (Euler’s number), σX and μX are the descriptors of the 
baseline normal distribution (average truck), and μn and αn  are the characteristic 
value and shape factor of the EVD defined as 
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Using these equations, the appropriate live load moment demand distribution at 
t = 1 year is  

 
n = (500 trucks/day)(365.25days/year)(1 year) = 182,625 trucks    (4.22) 
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from which the Type I Gumbel mean and standard deviation are 
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Figure 4.19 shows the mean value of the maximum expected live load 
moment over time.  The load experiences a sharp initial increase that tapers off 
over time.  Not visually apparent on the graph but present in the data and 
consistent with Figure 4.18, the standard deviation deceases over time. 
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Figure 4.19.  Moment demand live load effects for an ADTT of 500 trucks 
 

The consideration of live load effects significantly affects the analysis.  For this 
application, it was necessary to “redesign” the beam to a larger cross section.  A 
W690x125 is selected and the same deterioration process is used for the elastic 
section modulus as outlined above which results in the profile of the section 
modulus over time shown in Figure 4.20.  
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Figure 4.20.  W690x125 elastic section modulus deterioration 
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Repeating the reliability analysis with the updated live load profile and the 
updated section modulus profile results in the reliability index profile shown in 
Figure 4.21.  The immediate drop in the reliability index is indicative of a 
model that includes live-load effects. 
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Figure 4.21.  Reliability analysis results 
 
Messervey and Frangopol (2007c) introduced and investigated the idea of 

updating the average truck distribution (baseline) and the average daily truck 
traffic with monitoring data by leveraging the asymptotic behavior of the 
transformation between the baseline and the extreme value distributions.  Table 
4.5 shows the scenario of interest.    

 
 
 
 
 
 
 
 
 
 

Scenario
Mean Moment 

Demand µ X  (kN-m)
Std Dev of Moment 
Demand σ X (kN-m)

Number of 
Trucks Utility

HS20 Design 
Truck 305 78.7

Used to calculate the initial reliability 
index, basis for the theoretical average 
truck.

Nowak (1993) 228.75 73.2 500
Initial moment distribution based on the
average expected truck.  Used to 
calculate live load effects.

Simulated Data 167.5 77.2 300

Based on the Gindy and Nassif (2006) 
study.  Replicates SHM data.  Used to 
update the intial estimated moment 
distribution and volume of traffic.

Table 4.5. Scenario for monitoring based updating of the inital traffic distribution and ADTT
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The scenario contains two distinct distributions.  One is the theoretical data 
likely to be used for design (Nowak charts).  The second distribution is based on 
a recent study of 10 years of weigh-in-motion (WIM) data conducted by Gindy 
and Nassif (2006).  This study collected data across 33 sites in New Jersey, 
USA, and consists of millions of truck records.  The average truck from this 
study is less than the HS-20 to average truck ratio provided by the Nowak 
charts.  Placing the average truck on the 12.2m span at the location of maximum 
moment results in the maximum moment demand of N(167.5, 77.2) kN-m.  This 
distribution is used for the monitoring data.  In addition, a different average 
daily traffic is selected, n = 300 trucks.  As such, the initial performance 
prediction is based on different data than the structure actually experiences over 
time.  The research question investigated is: can this difference be observed and 
updated using monitoring data and the statistics of extreme values? 

Monitoring data is created by simulating 300 random instances of the 
baseline distribution N(167.5, 77.2) kN-M.  From these 300 data points (1 day), 
the maximum value is selected.  This process is repeated for 90 days at which 
time 90 maximum values are available to characterize the monitoring based 
daily extreme value distribution.  90 days is selected as a reasonable amount of 
time for the data to “mature” (e.g. for the distribution parameters to stabilize).    

The transformation of the theoretical data (e.g. N[228.75, 73.2] for n = 500 
trucks) should match the observed monitoring based distribution if and only if 
the structure experiences the same loading condition as predicted.  Any 
deviation indicates a disparity and updating is required.  For this example, the 
simulation was designed specifically to obtain differences in the predicted and 
observed data.  Messervey and Frangopol (2007c) details the equations and 
relationships utilized to average/update the transformed extreme value 
distributions (both theoretical and observed) and then the equations utilized to 
map the transformed (updated) distribution back to the baseline distribution (n = 
1) to change both the average truck mean moment demand and the average 
daily traffic.  This process produces a new baseline distribution for use in future 
performance prediction.  The results of the updating process are shown in Table 
4.6.   
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Mean Moment 
Demand µX  (kN-m) Number of Trucks

Std Dev of 
Moment Demand

σX (kN-m)
228.75 500 73.2

Simulated Data 167.5 300 77.2
Updated Parameters

 6 mo. 200.0 410 73.4
12 mo. 182.0 296 73.5
18 mo. 176.9 311 73.7
24 mo. 176.0 303 73.7

Parameters

Nowak (1993)

Table 4.6.  Updating theoretical traffic parameters using monitoring information

 
The results show that the baseline distribution is updated to reasonably match 
what is actually occurring on the structure after a period of two years.  Including 
this updated information in a reliability analysis results in the live load moment 
demand profile and the reliability index profile shown in Figure 4.22 and 4.23.  
The updated profiles would lead to different optimal management actions and 
lower life-cycle costs.  
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Figure 4.22.  Updated maximum expected live load 
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Figure 4.23. Updated reliability profile 
 

Example Critique   
The example illustrates several important points and novel ideas: 1) The 

inclusion of live-load effects results in significantly higher load demands, 2) 
Monitoring can be utilized to update initial assumed loading conditions, and 3) 
Extreme value statistics provide an interesting tool to manage and make use of 
monitoring data through the selection of maximum values in a specified 
observation timeframe.  However, the example has several key limitations and 
is mostly academic in nature.  For this example to find practical application, a 
bridge would have to be subjected to only the truck load each day for the 
specified and non-changing average daily traffic.  In reality, this is of course not 
the case.  Traffic varies daily although fluctuations could be reduced by 
considering weekly or monthly timeframes for analysis.  More importantly, live 
load demand is a function of other random variables and processes to include 
multiple truck crossings, varying spacing intervals, wind loads, temperature 
effects, etc.  For this reason, the intent of this example (updating the average 
daily truck distribution characteristics) is much too specific.  Instead a much 
broader view of the live load demand is appropriate. 

Despite these limitations, this example raised several critical research 
questions: What exactly is being observed when monitoring structural 
responses?  How long must monitoring data be observed in order to characterize 
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a distribution?  How can monitoring data be related to code specified return 
periods?  Are extreme value distributions appropriate?  What is the variability 
of monitoring based distribution parameters?  How should monitoring 
uncertainty be treated in an analysis?  The investigation of these questions led to 
the most important contribution of this thesis, the characterization and use of 
monitoring-based live loads for use in a reliability analysis which is the topic of 
Chapter 5.   

4.8 Conclusions 
Chapter 4 has examined the inclusion of monitoring in asset management in 

a life-cycle perspective.  In doing so, a sharp contrast has been provided in how 
monitoring is currently typically employed (e.g. an ad hoc reaction to a specific 
problem or defect).  Considerations for the inclusion of SHM have been 
provided from the strategic and program level, to the network level, to the 
formation of monitoring strategies at the structural level, and down to the 
inclusion of SHM data within a particular performance function for the 
evaluation of safety with respect to a particular failure mode.  All considerations 
have been constructed to occur in a life-cycle context.  In shaping modeling 
choices and conducting analyses, it is important to be clear what type of model 
and assumptions are present.  Is the model empirical/equivalent in nature (e.g. 
based upon the best possible belief or reasonable statistical data) or is the model 
performance-based/analytical in nature (e.g. based upon structure specific 
structural engineering calculations)?  In some cases, the overall model is a 
combination empirical and analytical data/methodology.  Keeping track of the 
limitations and assumptions of each is necessary. 

A progressive simple example for a time dependent reliability analysis was 
introduced.  This example highlighted the conduct of a reliability analysis, how 
the reduction of uncertainty can change the reliability analysis, the 
incorporation of life load effects, and the introduction of model updating 
through the use of monitoring based live load distributions.  The example will 
be revisited in Chapter 6 to include the calculation of the difference of life cycle 
costs between monitoring and non-monitoring approaches.    



 
 
 
 
 

Chapter 5 
 
 
 

THE CHARACTERIZATION OF 
MONITORING-BASED LIVE LOADS FOR 
USE IN A RELIABILITYANALYSIS 
 
 
 

Abstract 
 

This chapter was motivated by an investigation on how to relate time and 
monitoring information.  Given that most monitoring programs are non 
permanent and collect only short periods of data, what can be done with this 
information and how can it be related to code requirements?  Moreover, 
extreme events (hurricanes, floods, or overloaded trucks) are rare, actual 
structural response data for such events is lacking, and such events will most 
likely not be part of any available dataset.  Statistical errors, their quantification 
and treatment are also of concern.  For example, if one uses one week of 
monitoring data to describe a mean and a standard deviation, those descriptors 
will not match the mean and standard deviation if a second week of data is 
collected and considered.  Obviously more data will reduce uncertainty but 
more data also leads to higher costs implying optimization is required.   
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This chapter develops an answer to many of these questions through the 
application of extreme value statistics to monitoring data.  After a theoretical 
background is presented, simulations are conducted to (a) confirm that a known 
distribution can be observed via “peak picking,” and (b) to confirm the extreme 
value statistics.  Next, (c) a method to optimize the observation timeframe 
(daily, weekly, monthly) in which to characterize monitoring based parameters 
is developed, and (d) an approach to quantify the uncertainty of the monitoring 
based parameters within the optimal timeframe is presented.  The approach is 
demonstrated on a case study using 90 days of in-service data collected from a 
bridge located in Pennsylvania, USA. 

Preliminary results of this work have been presented at the First 
International Symposium on Life-Cycle Civil Engineering (Messervey and 
Frangopol, 2008) and a journal article entitled “Application of the statistics of 
extremes to the reliability assessment and performance prediction of monitored 
highway bridges” is in the final submission stage.  

5.1 Introduction 
 

The collection of in-service monitoring data over a period of time with the 
intent of defining the distribution of a random process poses several unique 
challenges.  Unlike recording a singular structural response to a specific load 
(e.g., a park test where a vehicle of known weight is positioned on the structure 
and the response recorded) or the detection of the presence or absence of a 
particular indicator (e.g., corrosive agents such as chloride), defining a 
distribution is sensitive to the amount of data collected raising two important 
questions.  First, how does the observed information relate to safety or code 
requirements?  To answer this question, another dimension, time, must be 
addressed.  For example, if a structure is monitored for a short period and only 
light load demands are recorded, one cannot conclude that the structure is safe.  
One could conclude that the structure was safe for the loads encountered during 
the period monitored, but does not adequately convey the safety of the structure 
over its intended service life.  When considering the entire life of a structure, it 

128 



Chapter 5 Characterization of Monitoring-Based Live Loads for use in a Reliability Analysis 
 

becomes clear that extreme events such as combinations of overloaded trucks, 
hurricanes, earthquakes, and other foreseen events must be considered.  For this 
reason, probabilistic models must be formulated such that they can be used to 
address both the serviceability and ultimate limit states during the entire life of a 
structure (Faber, 2000).  The second question that arises when using in-service 
data is how to ensure an accurate characterization of the monitoring based 
distribution and how to account for the uncertainty of the defined parameters.  
With fluctuations in daily traffic, changes in temperature, periodic wind forces, 
and other load demands, live loads are highly random.  As such, any method to 
characterize the live load distribution must balance determining the appropriate 
timeframe in which to observe load effects upon the structure with how many 
independent timeframes are required to define the distribution parameters.  
Because the end result will be point estimates based on one data set, a rational 
method to account for the potential variability of the parameters must be 
utilized. 

This chapter examines how extreme value statistics can be leveraged to 
simplify and enhance the assessment and performance prediction of monitored 
highway bridges by proposing an approach to obtain a monitoring-based live 
load for use in a reliability analysis.  By describing the distribution of the largest 
observed value in a specified timeframe, the statistics of extremes is well suited 
for structural safety assessment.  Furthermore, since the approach targets only 
maximum values it is efficient in terms of data reduction.  An important 
characteristic of extreme value distributions (EVDs) is their asymptotic 
behavior.  Once defined for a specific sample size or for a given timeframe, a 
simple transformation defines the distribution for a larger sample size or a 
longer desired timeframe.  Leveraging this property, information observed in 
reasonably collectable period of time (days, weeks, or months) can be related to 
the much longer code specified return periods for use in a reliability analysis.  
As such, both serviceability and ultimate limit states can be addressed.  Lastly, a 
method to identify, minimize, and to properly account for the epistemic 
uncertainty inherent to any monitoring record within a reliability analysis is 
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presented.  The approach can be utilized to plan data collection efforts or to 
maximize the utility of a fixed or limited amount of data.   

5.2 Theoretical Background and Application to the 
Design and Assessment of Highway Bridges 
 

The design and assessment of civil infrastructure is often concerned with the 
largest or smallest (extreme values) of a number of random variables.  For 
example, buildings must withstand maximum wind loads, dams maximum flood 
levels, and bridges maximum traffic loads for a given time period (Ang and 
Tang, 1984).  With respect to monitoring, this concept can be used as the 
selection criteria for what data to keep.  In permanent monitoring approaches, 
the magnitude of a continuous data stream across hundreds of sensors becomes 
a management problem in itself.  Selecting, logging, and maintaining peak 
values is one way to efficiently manage data (Frangopol and Messervey, 
2007b).   

An extreme value is the largest (or smallest) value from a set of n samples 
from a known distribution of a random variable X.  As the distribution X is 
repeatedly observed, the behavior of the maximum values Yn can be treated as a 
random variable itself 

 
Yn = max (X1, X2, X3, …, Xn)                (5.1) 
 

If the underlying distribution of X has an exponentially decaying upper tail, then 
the cumulative distribution function (CDF) and the probability density function 
(PDF) of the distribution of the extremes Y take the forms (Ang and Tang, 
1984), respectively:  

 
n

XY yFyF
n

)]([)( =                   (5.2) 

)()]([)( 1 yfyFnyf X
n

XYn

−=           (5.3) 
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which is to say that the final distribution of the extreme values is a function only 
of the initial distribution and the sample of size n.  This asymptotic behavior 
shows that if an extreme phenomenon can be defined in a specific timeframe of 
interest (or number of sampling occurrences), its distribution can be 
transformed to any other timeframe of interest.  Depending on how the tail of 
the underlying distribution decays in the direction of the extreme, Equations 5.2 
and 5.3 can lead to one of three well known asymptotic forms: the Type I 
double exponential (Gumbel), the Type II single exponential (Fisher-Tippett), 
or the Type III bounded exponential (Weibull).  The equations that govern the 
transformation of several common distributions into these asymptotic forms can 
be found in (Ang and Tang, 1984; Thoft-Christensen and Baker, 1982).   

To clearly illustrate in a very practical manner the concept of extreme 
values, a simple simulation is conducted.  Let X have an initial Gamma 
distribution ~Gamma(160.6, 8.8, 18.25) where 160.6 is the mean value and 8.8 
and 18.25 are the alpha and beta parameters respectively.  These parameters are 
chosen because they characterize the best fit Gamma distribution for the 
average truck data found in the Gindy and Nassif (2006) weigh-in-motion 
study.  Microsoft Excel is utilized to simulate this distribution 10 times to 
observe what happens to the average expected maximum value, μYn , within 
each sample of size n.  Table 5.1 shows the result of the 10th simulation for each 
sample of size n = 1 to size n = 4, and the behavior of Yn treated as a random 
variable across the 10 simulations.   

 
 
 
 
 
 
 
 

Table 5.1 Simple demonstration of the EVD concept

Sample 
Size

n

Sample 
Maximum
Yn (kN)

Avg of Sample 
Maximum Values

µYn (kN)

Std Dev of Sampl
Maximum Values

σYn (kN)

1 147.5 147.5 169.5 64.3
2 300.7 167.7 300.7 198.5 59.2
3 121.1 154.9 161.7 161.7 195.1 17.0
4 101.1 161.3 242.9 99.6 242.9 207.2 51.0

10th Random Realization (kN)
e 

Figure 5.1 extends this simulation and plots the distribution of Yn for samples of 
size n = 1, 5, 100, and 500 successively.  It is noted that the underlying Gamma 
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distribution is transformed into a Type I Gumbel EVD which has an 
increasingly higher mean and invariant standard deviation as the sample size n 
is increased.   
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Figure 5.1.  Simulation and transformation of a Gamma distribution to a Type I 

Gumbel extreme value distribution (EVD). 
 
The use of extreme value statistics is already well established in both the 

design and assessment of highway bridge structures.  With respect to design, the 
statistical treatment of combinations of extreme events has been utilized to 
calibrate load factors, resistance factors, and load combinations across different 
bridge types and spans with the goal of providing uniform levels of structural 
safety (Ghosn and Moses, 2003).  Particular attention has been given to the 
development of appropriate models for design trucks.  Researchers conducting a 
reliability analysis can consider the time effect of any recurring live load using 
the transformation governed by Equations 5.2 and 5.3.  Such an analysis defines 
the distribution of the most likely maximum value provided the number of times 
the original distribution has been observed.  Figure 5.2 illustrates this concept 
and the asymptotic behavior of extreme value distributions.  Figure 5.2a depicts 
the transformation of an underlying normal distribution into a Type I Gumbel as 
the number of times the underlying distribution is sampled, n, increases.  
Applied to a bridge reliability analysis, if the average daily truck traffic was 300 
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trucks, the distribution for n = 300 would be appropriate for a daily analysis 
while the distribution for n = 3000 would be appropriate to assess the safety for 
a 10 day timeframe.  Typically, this transformation is carried out to 75 years, 
consistent with the return period required for live loads.  Examples of such 
analyses can be found in (Estes and Frangopol, 2005).  Figure 5.2b illustrates a 
scenario of particular interest.  In the special case where the underlying 
distribution or the observed phenomenon is itself a Gumbel distribution, the 
transformation to a larger number of samples (or longer timeframe) involves no 
change in the shape of the distribution and is instead a simple shift. 
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Figure 5.2.  Transformation of: (a) an underlying normal distribution to an 
extreme value distribution, and (b) a Gumbel distribution transformed from one 

timeframe to another. 
 

The extension of coupling extreme value statistics with monitoring as 
applied to the assessment of highway bridges is different than the 
transformation previously discussed.  By peak picking monitoring data within a 
specified timeframe (for example selecting the maximum daily strain response 
from a monitoring record), one observes and defines the extreme value 
distribution directly instead of beginning with the underlying distribution.  
Goodness of fit can be tested for each of the three types of EVDs to determine 
which extreme distribution is most appropriate.  However, the Type I Gumbel 
offers two significant advantages.  First, the parameters necessary to define the 
distribution can be obtained directly from the mean and standard deviation of 
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the recorded extreme values without requiring numerical methods or tables.  
Second, the transformation to a 75 year live load is very simple (Figure 5.2b).  
For these reasons, this work develops a method to specifically leverage these 
simplifying characteristics of the Type I EVD.   

There are significant and compelling advantages to the use of SHM 
technologies to improve specifically the modeling of live loads on highway 
bridge structures which are summarized as follows: (a) improvement of existing 
models, (b) simplicity and efficiency, (c) bridge specific consideration, (d) 
performance updates over time, and (e) warning against extreme loads.  First, 
there is the possibility to improve the accuracy of existing models and code 
provisions on the basis of more complete and up-to-date data.  For example, it is 
reasonable to assume that the 1975 study of 9,250 trucks used for LRFD 
calibration of the first AASHTO LRFD Bridge Design Specifications (Nowak, 
1993) is no longer representative of current truck traffic.  Recently, weigh in 
motion (WIM) studies have been utilized to create much larger databases for 
truck weights.  One such study performed by Gindy and Nassif (2006) examines 
an 11-year period across 33 WIM sites located in the state of New Jersey and 
consists of millions of records.  Truck volumes, types, and weights, as well as 
seasonal effects and the implication of short collection periods are addressed.  
Such studies, based upon monitoring information, can provide the data 
necessary to re-examine the assumptions utilized in existing codes.  Developing 
a design truck is only part of the problem.  Vehicle speeds, vehicle spacing, the 
consideration of multi-lane structures, and the frequency of side-by-side 
occurrences are all aspects that affect the analysis.  To this end, many studies 
have focused on the development of realistic traffic simulations (O’Connor and 
O’Brien, 2005; Cohen et. al, 2003; Zokaie et. al, 1991).  However, such studies 
are time consuming and may not be easily transferred to structures of different 
span lengths, configurations, lanes, etc.  In contrast, by measuring instead of 
modeling the live load response of a structure, such efforts are bypassed and 
quite possibly greater accuracy is obtained.  This is the second main advantage 
of leveraging SHM.  The third is passing from a general to a specific assessment 
of a structure.  Codes and guidelines for both design and assessment must be 
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generalized such that they are applicable across a wide variety of structures 
although some more recent codes have provisions allowing for a performance 
based design approach.  The collection and use of structure specific data in a 
probabilistic analysis can consistently account for uncertainties at the local level 
and develop essentially what could be termed a bridge specific code 
(Enevoldsen, 2008).  The last two advantages pertain to the value of increased 
information over time.  Once a monitoring based live load distribution is 
characterized, it is possible not only to update an existing model but also to 
track changes as the structure ages.  Such changes could either indicate an 
increase in the live loads placed upon the structure consistent with current 
trends in traffic or a decrease in the resistance capacity indicating damage.  If 
the monitoring data is continuous, then it also becomes possible to provide a 
warning to decision makers when target threshold levels are breached. 

5.3 Characterizing Monitoring Based EVDs and their 
use in a Reliability Analysis 
 

The characterization of a monitoring-based distribution is sensitive to the 
amount of data available where more information correlates to greater accuracy.  
In some cases, the researcher or manager will be able to collect more data and in 
other cases only a limited data set may be available.  Differences in the 
statistical characterization of distribution parameters can be addressed in terms 
of error, confidence, or uncertainty where more information decreases error, 
increases confidence, or reduces uncertainty.  Throughout this study, an 
approach using uncertainty is developed.  Melchers (1999) provides a listing 
and begins to quantify some of the common sources of uncertainty encountered 
in structural engineering problems.  These include phenomenological 
(unforeseen events), decision, modeling, prediction, physical, and human factor 
sources of uncertainty.  A detailed analysis or consideration of all sources of 
uncertainty is best suited to the development of a bottom-up model that seeks to 
predict the total amount of uncertainty present.  However, in most cases, a 
monitoring-based approach will more closely resemble a top-down approach 
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where the uncertainty is observed holistically instead of being modeled by parts.  
In these scenarios, Ang and Tang (2007) classification of uncertainty as either 
aleatory (data-based uncertainty associated with natural randomness) or 
epistemic (knowledge-based uncertainty associated with lack of information and 
imperfect models) is more appropriate.  Using this approach, the aleatory 
uncertainty is the natural randomness of the process being observed, i.e. the true 
standard deviation of the monitoring-based live load.  The epistemic uncertainty 
includes all factors that prevent the perfect characterization of this distribution 
(mean and standard deviation) and will likely be dominated by statistical 
uncertainty (amount of data) and model uncertainty (use of a best-fit 
distribution). 

Due to the long service lives of bridges and the long return periods of 
extreme events they must withstand, it is impractical if not impossible to 
completely remove all epistemic uncertainty through an abundance of data, 
trials, or experiments.  Instead, data collection programs must balance 
minimizing the epistemic uncertainty with the cost of obtaining additional data 
which, in turn, requires a method to quantify and account for the potential 
variability of the recorded point estimates based on the available amount of 
data.  This is unique in that the random variable distribution parameters become 
random variables themselves.  Accounting for this additional variability in a 
reliability analysis requires multiple iterations of the analysis where the 
parameters are randomly varied resulting in a distribution of the reliability 
index.  Such a technique for the risk assessment of civil structures is developed 
and demonstrated by Ang (2007).  In that work, the variability of random 
variable input parameters was based upon engineering judgment and expert 
opinion.  Here, a statistical treatment of the data itself, along with the 
asymptotic behavior specific to the Gumbel distributions, will be used to 
quantify the variability of the monitoring based live load. 
 
5.3.1 Observation of the transformation of a single known 
distribution 
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Method development begins with the investigation of an idealized 
simulation to quantify how quickly and how accurately the transformation of a 
Gumbel distribution can be identified via peak picking.  The double exponential 
Type I Gumbel has a cumulative distribution function (CDF) and probability 
density function (PDF) defined, respectively, as   

 

)exp()( )( nn ux
Yn exF −−−= α            (5.4) 

 
)exp()( )()( nnnn uxux

nYn eexf −−−− −= ααα          (5.5) 

 
where n indicates the number of times the initial distribution X is sampled, αn  is 
the shape factor, and un  is the characteristic value.  In Messervey and Frangopol 
(2007b), a Gumbel distribution was fit to the results of the Gindy and Nassif 
(2006) weigh-in-motion study previously mentioned with the idea of developing 
a live load for assessment purposes based upon WIM data instead of the HS-20 
truck.  Although not specific to any particular bridge, the result is reflective of 
modern truck weights.  The resulting parameters for the best fit Gumbel were a 
characteristic value of  un = 156 kN and a shape factor of α = 0.015  
corresponding to an expected value of μX = 194.4 kN and standard deviation of 
σX = 85.5 kN.  In the current study, this distribution is randomly sampled 300 
times corresponding to an average daily truck volume of 300 trucks and the 
maximum value Yn (Y300 if related to the sample size and Y1 if related to time) is 
selected.  This process is repeated to form a vector of maximum values Yn 
which defines the observed extreme value distribution.  The mean μYn and 
standard deviation σYn of this vector of maximum values are related to the Type 
I Gumbel EVD parameters as (Ang and Tang, 1984)  
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n
Yn n α

γμμ −=             (5.7) 

 

where γ  = 0.5772 is Euler’s number.  If the considered number of samples is 
infinitely large, the distribution obtained via “peak picking” will match the 
asymptotic transformation of the initial distribution defined as (Ang and Tang, 
1984) 
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α

μμ n
XYn  574.65kN            (5.8) 

 

Specific to the Gumbel distribution, the standard deviation and shape factor are 
invariant and no equation is needed transform these quantities.   

This concept of observing a transformed distribution from a known 
underlying distribution can be visualized in Figure 5.2b where the distribution 
on left side of this figure is being sampled, the distribution on the right is being 
observed via the “peak picking” of maximum values, and Equation 5.8 provides 
the theoretical result which enables an evaluation of the peak picking process.  
The simulation is repeated 1500 times for increasing lengths of the vector of 
observed maximum values Yn.  Each simulation provides a point estimate for 
μYn and σYn.  Repeating the simulation allows the determination of the 
variability of these point estimates with respect to the number of observed 
maximum values.  1500 iterations of the simulation for each number of 
investigated maximum values were enough to ensure that the average of the 
point estimates (i.e., the mean of the mean and the mean of the standard 
deviation) converged to the correct values of μYn = 574.65 kN and σYn = 85.5 kN.  
As such, the standard deviation of the mean and the standard deviation of the 
standard deviation of the maximum values are determined for increasing sets of 
maximum values observed.  Table 5.2 reports the results of this experiment.  As 
expected, the consideration of more maximum values provides better parameter 
estimates (less variability of the result).  Although a reasonable estimation of 
the mean maximum value μYn is achieved rather quickly, the standard deviation 

138 



Chapter 5 Characterization of Monitoring-Based Live Loads for use in a Reliability Analysis 
 

of the maximum values σYn requires more data.  Minimum and maximum values 
of the parameters encountered in the simulation are reported in order to show 
the range of possible values and in particular to highlight the sensitivity of a 
point estimate of σYn to a small number of observations.  This is noteworthy 
because data monitoring sets of one or two weeks are far more common than 
monitoring data sets of 30, 60, or 90 days.  The impact of such variability on a 
particular reliability analysis is case-by-case specific.  However, it would be a 
mistake not to consider the variability of a point estimate at all. 

 
 
 
 
 
 
 
 
 
 
 
 

Number of maximum 
values observed 5 10 15 30 50 10

Standard deviation of 
    μ Yn  (kN) 38.1 26.8 21.7 15.8 12.0 8.5

Coefficient of variation 
using μ Yn  = 574.65 kN 0.066 0.047 0.038 0.028 0.021 0.015

Minimum/Maximum
    Observed μ Yn  (kN) 474.7 / 735.0 500.7 / 661.2 514.2 / 652.9 526.8 / 627.4 537.8 / 621.3 550.3 / 604.6

Standard deviation of 
    σ Yn  (kN) 35.2 26.2 22.4 15.9 12.4 8.7

Coefficient of variation 
using σ Yn  = 85.5 kN 0.412 0.306 0.262 0.186 0.145 0.102

Minimum/Maximum
    Observed σ Yn  (kN) 4.8 / 291.2 29.3 / 212.7 34.7 / 178.1 41.1 / 152.2 50.8 / 128.1 57.0 / 113.6

Table 5.2. Simulation results describing the variability of monitoring-based parameters for a Type I Gumbel 
                 Extreme Value Distribution based on the number of maxium values observed. 

0

 
Expanding the results of this particular simulation to a more generalized 

approach produces some interesting findings.  First, comparing the results in the 
first and fourth rows of Table 5.2 reveals that, at least for considered case of a 
Gumbel distribution, the variability of both the mean and standard deviation 
parameters is approximately equal, that is   

 

YnYn σμ σσ ≈              (5.9) 
 

Second, it is noted that the decrease in the variability of both parameters is 
proportional to the increase in the number of maximum values considered as 
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predicted by the Central Limit Theorem using the standard deviation of the 
underlying distribution  
 

m
X

Yn

σ
σ μ =      and    

m
X

Yn

σ
σ σ =         (5.10) 

 

where m is the number of observations of the maximum value.  For m = 10 and 
σX = 85.5 kN  
 

kNkN
YnYn

  0.27
10
5.85

=== σμ σσ         (5.11) 

 

which is approximately equal to the simulated results for m = 10 in Table 5.2.  
Figure 5.3 and Figure 5.4 show the results of similar calculations for m = 5 to m 
= 100 and plots the coefficient of variation vs. the number of observed 
maximum values for μYn and σYn.  Each plot consists of two curves, one 
simulated and the other predicted using Equation 5.10.  The curves overlap 
nearly perfectly except for small values of m where small deviations are present.  
This result demonstrates that the Central Limit Theorem can be utilized to 
predict the decrease in variability with respect to the number of maximum 
values considered/available. 
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Figure 5.3.  Coefficient of variation vs. the number of maximum values observed 
for the mean μYn 
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Figure 5.4.  Coefficient of variation vs. the number of maximum values observed 
for the standard deviation σYn 

 
The last step in generalizing the approach is to address that the standard 

deviation of the underlying distribution will be unknown for monitoring 
applications.  As such, it is necessary to assume that the point estimate for σYn  is 
reasonably accurate, i.e. 

 

XYn σσ ≈            (5.12) 
 

With this assumption, the variability of both Gumbel EVD parameters can be 
estimated directly from the monitoring data as 

 

m
Yn

YnYn

σ
σσ σμ ==           (5.13) 

 

The parameter variability estimations provided by Equation 5.13 allow for the 
treatment of parameter uncertainty within a reliability analysis.  Additionally, 
the ability to predict how additional data reduces this variability can serve as a 
planning factor in the determination of how long to monitor a structure.   
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5.3.2 Observation of the transformation of a multiple 
distributions into a single EVD 

The previous section demonstrated that the extreme value distribution for a 
sufficient number of n observations of an underlying distribution is both 
predictable (via transformation calculations) and observable (by selecting 
maximum values).  However, characterizing the underlying distribution of the 
live loads upon a bridge structure is more complicated than the simulation of a 
single known distribution.  Changes in daily traffic, side-by-side truck 
occurrences, and the effects of vehicle speeds, wind, and temperature quickly 
complicate the analysis.  As a result, the monitored data reflects a much more 
uncertain phenomenon and the application of extreme statistics to this data must 
consider that the process is a convolution of potentially unknown distributions, 
each of them characterized by different and potentially varying sampling 
frequencies.  For example, daily truck traffic may be 300 trucks today and 500 
trucks tomorrow.  Strong wind events may be fairly infrequent whereas 
temperature fluctuates daily and so on.  For such a process, the transformation 
into an extreme value distribution for maximum values may be impossible to 
predict and may only be observable.  Based on these observations, the 
possibility of measuring instead of modelling the live loads is highly desirable.       

Such a scenario of in-service monitoring data involving multiple underlying 
distributions with non constant sampling frequencies raises several important 
questions.  Do the maximum value descriptors converge to stable values in a 
reasonable amount of observations?  Can the process still be modeled by an 
extreme value distribution? And lastly, what is the appropriate timeframe in 
which to observe and select the maximum values?  For example, daily 
fluctuations in traffic may lead to high epistemic (model) uncertainty if a daily 
timeframe is used for the selection of maximum values because the process is 
not completely observed.  Instead, weekly maximums or monthly maximums 
might be more appropriate by allowing short term traffic fluctuations to average 
out.  Although a longer observation timeframe is generally more desirable, it 
must be balanced against the fact that it reduces the number of maximum values 
available to define the EVD using the same amount of data.  For instance, 90 
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days of monitoring data provides 90 daily maximums vs. 12 weekly maximums, 
and 3 monthly maximums.   Too few observations increases the uncertainty 
predicted by Equation 5.13 and depicted in Figures 5.3 and 5.4.   

To begin answering these questions, three random processes are simulated as 
detailed in Table 5.3.  Each random process has a different and random 
frequency of occurrence within each “day” of the simulation.  Process 1 follows 
a Gamma distribution.  Its frequency of occurrence each day is determined by a 
uniform random variable ranging between 400 and 1600.  Hence, with equal 
probability, Process 1 occurs between 400 and 1600 times each day.  Process 2 
follows a Normal distribution.  Its frequency of occurrence is controlled by a 
random variable with a probability of occurrence p(s) = 0.05.  As such, the 
normal distribution is either sampled or it is not sampled with an average 
occurrence (or return period) of one time every 20 days.  Process 3 also follows 
a Normal distribution.  This distribution is sampled exactly once per day. 

 

Distribution
Frequency of 
Occurrence Distribution

Frequency of 
Occurrence Distribution

Frequency of 
Occurrence

Gamma Uniform Distribution Normal Random Normal Once per day
α  = 5.69
β = 35.83

a  = 400
b  = 1600

μ  = 50
σ  = 10 p (s )  = 0.05 μ  = 0

σ  = 20

Table 5.3. Simulation distribution types, parameters, and frequencies of occurrence. 

Process 1 : Truck Load (kN) Process 2 : Wind Effect (kN) Process 3 : Temp. Effect (kN)

 
 
The convolution of these three processes occurs daily within the simulation 

according to the following rules.  Each day the maximum value from Process 1 
is selected.  If Process 2 occurs, this value is added directly to Process 1.  
Process 3 does occur each day and this observation is added directly to the 
summation of Processes 1 and 2.  As such, the simulation and summation of 
these processes results in a highly random phenomenon that changes each day 
of the simulation.   

This phenomenon is motivated by, but does not accurately model, the live-
load demand on a generic member of a highway bridge where Process 1 
represents the weight of daily truck crossings, Process 2 models an occasional 
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wind effect, and Process 3 models daily thermal effects.  The Gamma 
distribution for Process 1 is again fit to the Gindy and Nassif (2006) WIM 
study.  The magnitude of the wind effect (Process 2) is small in proportion to 
the truck weight and always positive.  The magnitude of the temperature effect 
(Process 3) is even smaller in proportion to the truck weight and can either be 
positive or negative.  Of course, this scenario could be improved for any 
specific structure of interest.  However, assuming a linear elastic behavior, it is 
reasonable to state the load effects of trucks, wind, and temperature on 
structural members can be superimposed.  As such, the objective of the 
simulation is not to accurately model the live load demand upon any particular 
structure or member, but instead to model and capture the mathematical aspects 
of a process approximately as random in order to determine how long the 
process must be observed to define its characteristics.   

 The simulation is run for 45,000 days, the loads are simulated and 
combined as previously discussed, and 45,000 daily maximum values are 
generated.  Such a long period is used only to be able to obtain and compare 
1500 observations of daily, weekly, and monthly maximum data.  Starting on 
the second day, the average, μYn, and the standard deviation, σYn, of the 
maximum load are calculated to investigate how many observations are required 
to converge on a particular value.  The same process is repeated using the same 
daily data, but weekly and monthly maximums are selected.  Hence, the 
parameters μY1, μY7, μY30 and σY1, σY7, σY30 (where 1, 7, and 30 denote one day, 
one week, and one month, respectively) are calculated which define the same 
extreme distribution for different observation timeframes (or number of 
instances sampled).  Fig. 3 depicts the results of the simulation for 1,500 
observations of each considered time interval (day, week, month).  The 
observations are recorded on the abscissa, and magnitude of the mean load 
demand or standard deviation (in kN) is recorded on the ordinate.  In each case, 
excellent convergence is generally achieved after 500 observations, but a 
sufficiently close convergence is observed to occur much sooner with a small 
margin of error.  As expected with extreme values, longer timeframes (more 
samples) result in larger mean values.   

144 



Chapter 5 Characterization of Monitoring-Based Live Loads for use in a Reliability Analysis 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0 500 1000 1500
590

600

610

620

630

640

650

0 500 1000 1500
695

700

705

710

715

720

725

μY1

μY7

M
ea

n 
da

ily
 m

ax
im

um
 μ

Y
n(

kN
)

Number of observations considered

(a)

(b)

M
ea

n 
da

ily
 m

ax
im

um
 μ

Y
n(

kN
)

Number of observations considered

0 500 1000 1500
750

760

770

780

790

800

810

μY30

(c)

M
ea

n 
da

ily
 m

ax
im

um
 μ

Y
n(

kN
)

Number of observations considered

0 500 1000 1500
20

30

40

50

60

70

80

90

σY1

(d)

St
d.

 d
ev

. o
f d

ai
ly

 m
ax

im
um

 σ
Y

n(
kN

)

Number of observations considered

0 500 1000 1500
10

20

30

40

50

60

70

80

90

σY7

(e)

St
d.

 d
ev

. o
f d

ai
ly

 m
ax

im
um

 σ
Y

n(
kN

)

Number of observations considered

0 500 1000 1500
20

30

40

50

60

70

80

90

σY30

(f)

St
d.

 d
ev

. o
f d

ai
ly

 m
ax

im
um

 σ
Y

n(
kN

)

Number of observations considered

0 500 1000 1500
590

600

610

620

630

640

650

0 500 1000 1500
695

700

705

710

715

720

725

μY1

μY7

M
ea

n 
da

ily
 m

ax
im

um
 μ

Y
n(

kN
)

Number of observations considered

(a)

(b)

M
ea

n 
da

ily
 m

ax
im

um
 μ

Y
n(

kN
)

Number of observations considered

0 500 1000 1500
750

760

770

780

790

800

810

μY30

(c)

M
ea

n 
da

ily
 m

ax
im

um
 μ

Y
n(

kN
)

Number of observations considered

0 500 1000 1500
20

30

40

50

60

70

80

90

σY1

(d)

St
d.

 d
ev

. o
f d

ai
ly

 m
ax

im
um

 σ
Y

n(
kN

)

Number of observations considered

0 500 1000 1500
10

20

30

40

50

60

70

80

90

σY7

(e)

St
d.

 d
ev

. o
f d

ai
ly

 m
ax

im
um

 σ
Y

n(
kN

)

Number of observations considered

0 500 1000 1500
20

30

40

50

60

70

80

90

σY30

(f)

St
d.

 d
ev

. o
f d

ai
ly

 m
ax

im
um

 σ
Y

n(
kN

)

Number of observations considered

Figure 5.5. 1,500 observations of the mean of daily maxima, μYn, in (a) daily (b) 
weekly and (c) monthly timeframes, and the standard deviation of daily 

maximums in (d) daily (e) weekly, and (f) monthly timeframes. 
 
The average daily maximum converges to a value of 598 kN for the daily 

maximums, 699 kN for the weekly maximums, and 769 kN for the monthly 
maximums.  With respect to the standard deviations, it is noted that longer 
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timeframes decrease variability.  The standard deviation of the daily maxima 
converges to a value of 70 kN, the weekly maxima to 62 kN and the monthly 
maxima to 59 kN.  This decrease in standard deviation is correlated to the 
stability or maturity of the process being observed.  Here, changes in daily 
traffic volumes increase the randomness of the daily maxima.  Utilizing the 
same data, traffic volume fluctuations are less prevalent in the weekly and 
monthly observation timeframes leading to a lower standard deviation and more 
accurate characterization of the EVD.  This can also described as reducing the 
epistemic (modeling) uncertainty to obtain the best possible characterization of 
the aleatory (natural) uncertainty.   

Having demonstrated that the simulation results converge to stable values, it 
is desirable to investigate if an EVD is an appropriate model for this 
convolution of independent random processes.  Figure 5.6 plots a histogram of 
the 45,000 daily maxima.  The data dispays the characteristic shape of an EVD.   
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Figure 5.6. Histogram for the simulated daily maximum loads. 
 

An empirical cumulative distribution function (ECDF) is created for the data 
which is shown in Figure 5.7.  The best fit Type I, Type II, and Type III 
extreme value distribution CDFs are found by minimizing the sum squared error 
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(SSE) and are also plotted.  Each EVD model provides a reasonable fit to the 
ECDF.  Further investigating goodness of fit, the Type III (Weibull) fits the data 
nearly exactly with a slight deviation at the upper tail, the Type I (Gumbel) fits 
the data very well with a slight deviation at the lower tail, and the Type II 
(Fisher-Tippett) has slightly larger deviations at both tails. 
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Figure 5.7. Simulation ECDF and the best fit EVD CDFs for the simulated daily 
maximum loads. 

 
The Gumbel distribution is selected as the preferred model because of its 

previously discussed advantages.  Next, the selection of the best possible 
observation timeframe is investigated and discussed.  To make a comparison, 
the distributions must be transformed to a common reference timeframe.  
Because truck loads dominate the response of a highway bridge it is most 
appropriate to map the distribution defined by each observation timeframe to 
the 75 year design truck live load return period consistent with existing codes 
(Ghosn et. al, 2003; Ghosn and Moses, 1986).  Using the mean and standard 
deviation obtained in Figure 5.5 for 1500 observations in a daily timeframe 
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(e.g., μYn = 598kN and σYn = 70kN) the shape parameter of the daily extreme 
value distribution is calculated using Equation 6 as 

 

01833.0
)70(61 ==

πα             (5.14) 

 

Equation 5.8 can then be used to transform the distribution of the daily 
maximums to the 75 year return period as  
 

kN
years

year
day

kNyearY 45.1155
01833.

)7525.365ln(
59875 =

×
+=μ     (5.15) 

 
with the standard deviation and shape parameter remaining invariant.  Table 5.4 
reports these values together with the ones obtained when considering the 
weekly and monthly observation timeframes.   

 
 
 
 daily, Y 1 75 year weekly, Y 7 75 year monthly, Y 30 75 year

n  = 1 n  = 27375 n = 1 n  = 3900 n = 1 n  = 900
 
 
 

α 0.0183 0.0183 0.0207 0.0207 0.0217 0.0217
μ  (kN) 598 1155 699 1099 769 1082
σ  (kN) 70 70 62 62 59 59

EVD parameters

ble 5.4. Extreme value distribution (EVD) parameters characterized in different observation
          timeframes and transformed to 75 year EVDs.

Ta
         

 
The results show that each observed timeframe (daily, weekly, and monthly) 

maps to similar, but different 75-year live load distributions as depicted in 
Figure 5.8.  Ideally, the observed distributions should be identical in shape and 
should successively shift to the right (larger mean values) on the abscissa.  
Instead, the transformed distributions should overlap (be the same distribution).  
For this simulation, there are some differences in shape among the observed 
distributions corresponding to the different observed standard deviations.  For 
the transformed distributions, the weekly and monthly observation timeframes 
nearly overlap whereas the daily observation timeframe is shifted further to the 
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right.  From Equation 5.8, it is noted that the standard deviation is directly 
correlated to the magnitude of the transformation with higher standard 
deviations corresponding to larger shifts.  For the application of monitoring 
highway bridges, higher standard deviations in part correspond to less 
monitoring information.  Although generally desirable to minimize such 
variability, its inclusion (higher standard deviation) results in a conservative 
estimation of the live load (greater mean and standard deviation) when 
considered in a reliability analysis.   
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Figure 5.8.  Simulation based observed daily, weekly, and monthly EVDs and their 
associated transformations to a 75 year EVD. 

 
In itself, the results from this simulation or from Figure 5.8 cannot be 

utilized to state which observation timeframe is best suited for the reliability 
analysis of any particular bridge.  Here, the amount of data was essentially 
unlimited as 1500 monthly observations correspond to an unrealistic monitoring 
period of 125 years.  Furthermore, more data is not necessarily better.  Although 
a longer observation timeframe does average out short term fluctuations in the 
data, it also implies a greater commitment of resources.  Additionally, a desired 
outcome of such an approach is the investigation of changes in structural 
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performance through distribution parameter changes.  The selection of an 
observation timeframe and desired number of observations that span a period 
likely to undergo a change in performance would mask the ability to detect this 
change.  More appropriate to bridge monitoring is the determination of an 
appropriate balance between selecting the observation period and number of 
observations of that period that provide reasonable results, and then repeating 
the process to search for trends in changes of performance.  Separately, one may 
be constrained to a fixed or limited amount of data.  In such cases, a method that 
optimizes the utility of the available data and which accounts for the uncertainty 
present is needed.     

 
5.3.3 Two methods for the inclusion of live load parameter 
uncertainty in a reliability analysis 

Two separate methods can be utilized to quantify the uncertainty associated 
with characterization of a monitoring based live load distribution and to 
incorporate this uncertainty in a reliability analysis.  Either the random variable 
distribution parameters can themselves be treated as random variables or 
separate error terms can be added to the performance function.  Equation 5.16 
shows an approach where error terms are incorporated into the performance 
function and related to the live load (Messervey and Frangopol, 2008) 

 

)()1( timeframeobsLD LLRg εε ++−−=        (5.16) 
 

where R is the resistance, LD the dead load, LL the monitoring-based EVD live 
load, εobs the error associated with the amount of data available, and εtimeframe the 
error associated with the selected observation timeframe.  Two error terms are 
proposed instead of one because it is possible to conduct investigations to 
quantify uncertainty specific to both the observation timeframe and the amount 
of available data.  Both error terms are modeled as normally distributed random 
variables.  Each has a mean of zero indicating an equal likelihood of 
underestimating or overestimating the live load.  The standard deviation of both 
types of error is calculated as the product of a coefficient and the mean value of 
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the EVD.  As such, the magnitude of the error is a function of the magnitude of 
the monitored observations.  Both terms are calculated with respect to the 
observation timeframe utilized to characterize the EVD parameters (e.g. before 
transformation to a 75 year EVD).  Table 5.5 and Table 5.6 provide a starting 
point for the estimation of two separate error coefficients, a and b, associated 
εobs and εtimeframe respectively.  Coefficient values are estimated from the 
conducted simulation work, are preliminary estimates only, and should be 
regarded only as a proof of concept.   

 

7 14 30 90 180 36
a 0.25 0.15 0.1 0.05 0.03 0.01

Table 5.5. Coefficient to determine the standard deviation of
     εobs as a function of the mean of the monitored extreme
     value distribution and amount of data considered

Number of Observations

 
 
 

5 
 
 

b 0.06 0.03 0.01

Table 5.6. Coefficient to determine the standard deviation of
     εtimeframe as a function of the mean of the monitored 
     extreme value distribution and timeframe selected

Selected Timeframe
Daily Weekly Monthly

 
 
 
 
 
 
As an example illustrating the use of these tables, Figure 5.5 is read at the 30 

day mark for the daily observation timeframe representing a monitoring 
program that collects one month of information.  After 30 days, the mean 
maximum value is approximately 620 kN and the standard deviation is 
approximately 65 kN.  Estimating the error (uncertainty) associated with the 
daily observation timeframe results in the selection of a = 0.01 for 30 
observations and b = 0.06 from Table 5.5 and Table 5.6.  Applying these 
coefficients, εobs is normally distributed with parameters ~N(0, 62) kN where 
620 x 0.1 = 62 kN for 30 days of data.  Likewise, εtimeframe is normally 
distributed with parameters ~N(0, 37.2) where 620 x 0.06 = 37.2 kN for the 
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daily observation timeframe.  Transformation to the 75 year EVD is then 
conducted first using Equation 5.6 to calculate the shape factor 

 

01972.0
)65(6

14.3
6

===
Yn

n σ
πα                     (5.17) 

 

and then Equation 5.8 to conduct the transformation of the mean maximum 
value  to the 75 year EVD 

 

kNkNn
XYn 2.1138

01972.0
)27394ln(620)ln(

=+=+=
α

μμ                            (5.18) 

 

The final distribution for use in a reliability analysis with respect to a 75 year 
safety assessment is Gumbel(1138.2, 65)kN with εobs = ~N(0, 62) kN and 
εtimeframe = ~N(0, 37.2).    

The end result of employing this approach (Equation 5.15) is the calculation 
of a single value for the reliability index.  With respect to a standard reliability 
analysis, the inclusion of error terms (additional uncertainty) results in a lower 
(more conservative) value of the reliability index.  Instead, it might be desirable 
to calculate a distribution of the reliability index by considering the 
characterized monitoring based distribution parameters as random variables 
themselves as illustrated in Figure 5.9. 

 
 

Each parameter is itself a random 
variabile with a mean equal to the 
calcuted estimate and a standard 
deviation that must be quantified
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Figure 5.9.  Performance function where the live load descriptors are in themselves 
random variables. 

 
Using such an approach, the decision maker has a more detailed 

representation of the possible range of structural performance.  Quantifying the 
variability of the mean and the variability of the standard deviation of a random 
variable can happen in two principle ways, it can be estimated or it can be 
calculated.  In Ang (2007), the variability of random variable input parameters 
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is based upon engineering judgment and expert opinion concerning the 
reliability of the levee system in New Orleans prior to Hurricane Katrina in 
2005.  By paring different storm intensities, storm surges, and other factors 
related to the system reliability, a distribution of the reliability index was 
created that provided a more complete assessment of risk with respect to levee 
failure.  For monitoring data sets and the consideration of statistical error, it is 
possible to qualitatively estimate parameter uncertainty based off the amount of 
data collected.  This is the purpose of equation 5.13 developed in the first 
simulation that demonstrated that the parameter uncertainty decreases 
proportional to the amount of data collected and can be estimated using the 
Central Limit Theorem.  As an example of the application of Equation 5.13, the 
equation is applied again to the Figure 5.5 reading of μYn = 620 kN and σYn = 65 
kN for 30 observations of daily maxima.  Using this information 

 

kN
YnYn

87.11
30

65
=== σμ σσ         (5.19) 

 

Treated as a random variable, μYn would be normally distributed centered at 620 
kN with a standard deviation of 11.87 kN.  The standard deviation as a random 
variable is also normally distributed, centered at 65 kN with a standard deviation 
of 11.87 kN.  These characteristics are calculated in the observation timeframe 
of the data and are assumed not to amplify if transformed to another observation 
timeframe.  For this example, the 75 year EVD with its parameters as random 
variables would have its mean centered at 1138.2 kN (Equation 5.18) with a 
standard deviation of the mean = 11.87 kN and a standard deviation of 65 kN 
with a standard deviation of the standard deviation = 11.87 kN.  As such, the 
uncertainty associated with the characterization of the Type I Gumbel in the 
observation timeframe is assumed to be applicable to transformed distribution 
in any other timeframe. 

To incorporate this information in a reliability analysis requires multiple 
iterations of the analysis.  Essentially, one conducts a Monte Carlo simulation 
of the reliability analysis where first the parameters for the reliability analysis 
are simulated and then the reliability analysis is conducted.  Each simulation 
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results in one value of the reliability index.  After a large number of simulations, 
a histogram of the reliability index is created.  Figure 5.10 summarizes the 
process described in this section for the characterization of monitoring based 
distributions for use in a reliability analysis.  This process is specific to and 
leverages the characteristics of the Type I Gumbel extreme value distribution.   
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Figure 5.10.  Process for the characterization of monitoring-based distributions for 
use in a reliability analysis. 
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5.4 Application 
 

Bridge Overview and Monitoring Program 
The Lehigh River Bridge SR-33 (Figure 5.11) was constructed in 2001 and 

is situated in Bethlehem, PA, USA.  The bridge is a four-span continuous 
weathering steel deck truss with a main span of 181.05 m.  The depth of the 
truss varies from 10.97 m (at midspans) to 21.95 m (over the supports).  The 
structure is subjected to light to medium truck traffic.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.11. Photograph of the main span of the SR33 Lehigh River Bridge 
(photo taken by Sunyong Kim on 8 January 2008). 

 
The Lehigh River Bridge is unique because the reinforced concrete deck is 

not only composite with the longitudinal steel stringers and transverse floor 
beams, but also with the upper chord members of the truss through the use of 
shear studs connecting the upper chords directly to the bridge deck.  This 
structure is the only composite truss in the State of Pennsylvania and possibly 
the United States (Connor and McCarthy, 2006).  The main truss members (i.e., 
upper chords, lower chords and diagonals) are fabricated from structural steel 
plates into box or “H” shapes. The steel stringers, sway bracing, and cross 
bracing members are all rolled “W” shapes.  
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Monitoring of the Lehigh River Bridge was conducted during construction, 
for controlled load tests using test trucks, over time for temperature 
measurements, and for several short periods of in-service usage (Connor and 
McCarthy, 2006; Connor and Santosuosso, 2002).  The objective of the study 
was to measure mechanical and thermal strains during construction and while 
in-service in order to better understand the performance of the structure, the 
composite truss-deck interaction, and to demonstrate the feasibility and value of 
monitoring activities during construction and while in service.  Data is available 
from representative periods of time that include all seasons.  Instrumentation 
and testing were conducted by personnel from Lehigh University’s Center for 
Advanced Technology for Large Structural Systems (ATLSS).  Complete 
descriptions of the bridge layout as well as the field and instrumentation 
programs are available in ATLSS reports prepared by Connor & Santosuosso 
(2002) and by Connor & McCarthy (2006).   

 Reliability Assessment for Yield Strength

0.0

2.0

4.0

6.0

8.0

10.0

12.0

R
EL

IA
B

IL
IT

Y 
IN

D
EX

,  β

Upper Chord
Lower Chord
Stringer

August 9,
2001

October 23,
2001

January 4,
2002

March 11,
2005

D
E

AD
 W

EI
G

H
T 

O
F 

TR
U

SS

D
EA

D
 W

E
IG

H
T 

O
F 

TR
U

S
S

AN
D

 C
O

N
C

R
E

TE
 D

E
C

K

D
E

A
D

 W
E

IG
H

T 
O

F 
TR

U
S

S,

C
O

N
C

R
E

TE
 D

EC
K

 
A

N
D

 C
R

AW
L 

LO
A

D

D
E

A
D

 W
E

IG
H

T 
O

F 
TR

U
S

S,

C
O

N
C

R
E

TE
 D

EC
K

, T
E

M
PE

R
A

TU
R

E,
  

A
N

D
 T

R
A

FF
IC

 L
IV

E
 L

O
AD

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.12.  Reliability analysis of the SR33 Lehigh River Bridge at key 
construction and testing milestones (Adopted from Frangopol et al., 2008) 

 
Frangopol et al. (2008) used data collected from this instrumentation 

program to assess the reliability of the truss upper chord, truss lower chord, and 
deck stringers at each construction or testing milestone.  Sensors were located 
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on member cross sections and from positions on the bridge that maximized 
strain responses.  The end result of this work with respect to the reliability 
assessment of these members is reported in Frangopol et al. (2008) and 
determined that the structure had a high reliability during construction, for the 
controlled crawl load test, and for the one day of in-service live load monitoring 
as shown in Figure 5.12.  The next logical step for the assessment of this 
structure is an extrapolation of the future reliability of the bridge based upon 
live-loads monitored over time. 

 
Data Collection, Data Management, and Critical Member Selection 

Periodic, in-service data is available from 24 sensors located on various 
members during dates that range from June 2004 to February 2005 (Connor and 
McCarthy, 2006).  For each sensor, approximately 90 days of data are available.  
Measurements are trigger-based meaning that sensors were only activated when 
prescribed strain thresholds were exceeded (save power and reduce meaningless 
data).  Two control units (one for each direction of traffic) were utilized to 
coordinate and log sensor data.  Noise spikes (as shown in Figure 5.13) that are 
often associated with vibrating wire strain gauges were present in the data and 
were manually removed from each record for this analysis.   
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Figure 5.13 Stress response of four sensors for a particular segment of time 
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Because this application focuses specifically on the aspect of extreme 
values, it was not desirable to consider all 24 sensors due to the effort involved 
in manually managing and processing the data.  Ideally, a data processing 
algorithm could be written and incorporated into the data collection program 
beforehand that would identify and log data of interest.  However, this analysis 
occurred years after the data collection program and persistent noise spikes in 
the data made it impossible to process the data without human judgement.  
Figure 5.13 shows the stress response of 4 sensors for a particular segment of 
time.  The spikes are identifiable because they are instantaneous in nature and 
they prevent the selection of maximum values without a visual check.   

The selection of the most critical members for analysis was aided 
significantly by dynamic tests conducted and reported by Connor & McCarthy 
(2006) and by the reliability analysis conducted by Frangopol et al. (2008).  The 
responses of a lower chord, upper chord, and two stringers to a series of 
vehicles travelling eastbound are shown in Figure 5.14 (adapted from Connor 
and McCarthy, 2006). 
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Figure 5.14.  Structural responses of two stringers, the truss upper chord, and the 
truss lower chord to four separate vehicles traveling eastbound (adapted from 

Connor and McCarthy, 2006). 
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The global response of the lower chord is characterized by its early response to 
the load.  Its response gradually increases as the load traverses the main river 
span and peaks when the truck is above the sensor.  The upper chord and 
stringers show more abrupt responses when the load is directly above these 
members as these members primarily undergo local bending.  Also, lane 
position can be inferred from this same figure.  Stringers 3 and 4 have a 
significant response to the first two stress cycles, indicating that the vehicles are 
travelling in Lane 3, since these two stringers are directly beneath this lane of 
traffic.  The next stress cycle indicates that the vehicle is positioned in Lane 2 as 
the upper and lower chords, located directly below Lane 2, have more 
significant responses than the stringers.  These and similar dynamic tests 
reported in Connor and McCarthy (2006) consistently identify the upper truss 
chords and four (of nine) stringers as those having the most significant 
responses during traffic loading. 
 
Sensor Selection, EVD parameter estimation, and optimization of the 
observation timeframe 

The two upper truss chords, located above a support and at bridge midspan 
respectively, are selected as the critical members for this structure.  Although 
the stringers have slightly lower reliability indexes (Frangopol et. al, 2008), the 
failure of one stringer does not typically lead to global failure of the structure 
due to load redistribution within the deck.  In contrast, the failure of a truss 
component may result in a global collapse and as such these members are 
deemed more important.  Figure 5.15 shows the structural scheme and the 
critical locations selected for the analysis in this paper.  Two different locations 
are selected due to the composite nature of this particular truss.  Although one 
may expect the upper truss chord to be in compression at midspan, local 
bending (with the deck) dominates the response.  This local bending of the 
upper chord members is also of interest at midspan because the deck is thinner 
and the upper chord truss members also have smaller cross sections resulting in 
potentially larger stress demands. 
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Figure 5.15.  (a) Structural schematic of the bridge (b) sensor placement on 

members of interest, and (c) location of the members of interest selected for the 
reliability analysis. 

 
Daily maximum stresses are computed from the measurements of four 

sensors centrally placed on the bottom flange of their respective upper chord 
truss members.  Two sensors are located above the main support (one in each 
direction of traffic) and two sensors are located at the center of the main span of 
the bridge (again one in each direction of traffic).  Each sensor records 
approximately 90 days of data.  The number of observed days is not the same 
for all sensors due to the data being trigger-based, controller malfunction, 
and/or sensor malfunction.  Table 5.7 shows the statistical descriptors of the 
daily maximum stresses for each of the four sensors.  From the data, it appears 
that the eastbound lane experienced slightly greater stress demands and that the 
upper chord at bridge midspan is subjected to greater live-load stresses than the 
one above the main support.  It is also observed that the bridge experiences very 
small live-load stresses compared to the average yield strength of 380 MPa for 
the M270 Grade 50W steel (Frangopol et. al, 2008).   
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Descriptor
Span16-18 

Over Support 
(Eastbound)

Span16-18 
Over Support 
(Westbound)

Span26-28 
Midspan 

(Eastbound)

Span26-28 
Midspan 

(Westbound)
Number of days monitored 92 88 93 88
Average daily maximum stress, μ Yn (MPa) 8.33 7.99 12.75 12.01
Std. dev. of the daily maxium stress, σ Yn (MPa) 1.13 1.12 2.16 1.56
Maximum recorded daily maximum stress (MPa) 10.75 10.97 16.98 16.12
Minimum recorded daily maximum stress (MPa) 3.63 3.20 5.61 5.56

  Table 5.7: Daily maximum live-load stress descriptors for the upper truss chord at midspan and above
                  main support in both directions of traffic

Using this data, Span 16-18 (Eastbound) and Span 26-28 (Eastbound) are 
selected for the reliability analysis.  Both the midspan and the over support 
locations are considered due to differences in member sizes and the deck cross 
section affecting both the resistance capacity and the dead loads.  Although the 
data in Table 4 could be utilized directly to characterize the daily EVDs for both 
sensor locations, it is first desirable to investigate if longer observation 
timeframes provide more accurate (less uncertain) characterizations of the 
EVDs.  For this purpose, maxima are selected from the same data sets by 
picking the maximum value from timeframes of increasing length (e.g., every 
two days, every three days, and so on) thus creating new vectors of maximum 
values.  Once each vector of maxima is established, the mean and standard 
deviation are computed, and Equations 5.6 and 5.7 are used to define the 
respective EVDs.  The results from these calculations are shown in Figure 5.16 
for the eastbound sensor at bridge midspan.   

Ideally, each successive distribution should shift slightly to the right on the 
abscissa and no change in shape should be present.  While the first aspect is 
observed as expected, a large change in shape between the 1 day, 2 day and 3 
day maxima indicates the presence of routine short term fluctuations in the data.  
For the same data, the 3, 4, and 5 day distributions are nearly identical in shape 
indicating that the EVD is well defined by these timeframes for the available 
data.  Because this analysis only had approximately 90 days of data, the 
standard deviations begin to increase for the 6 through 12 day observation 
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timeframes as there are fewer and fewer maximums available to define the EVD 
distribution parameters. 
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Figure 5.16 Optimization of the observation timeframe for 93 days of data for 
Span 26-28 (Eastbound) 

 
Based on these results, the 3 day distribution is selected as the optimal 
timeframe from which to select the maximum values because it minimizes the 
standard deviation of the EVD and maximizes the number of available 
maximum value observations once a stable shape is obtained.  Table 5.8 reports 
the monitoring based 3yr and 75yr Type I Gumbel EVD parameters. 

 
 
 
 
 
 
 
 

Sensor

Descriptor 3 Day EVD 75 Year EVD 3 Day EVD 75 Year EVD
Mean, μ Yn (MPa) 9.13 14.00 14.26 23.03
Std. Dev., σ Yn (MPa) 0.684 0.684 1.23 1.23
Charecteristic value, μ n (MPa) 8.82 13.68 13.72 22.49
Shape factor, α 1.88 1.88 1.04 1.04

Span16-18 Over Support 
(Eastbound)

Span 26-28 Midspan 
(Eastbound)

Table 5.8. Type I Gumbel 3 year and 75 year EVD parameters 

162 



Chapter 5 Characterization of Monitoring-Based Live Loads for use in a Reliability Analysis 
 

The impact of this choice (optimizing the observation timeframe and selecting 
the 3 day EVD instead of the 1 day EVD) is illustrated in Figure 5.17 which 
shows the transformation of both the 1 day and 3 day EVDs to a 75 year EVD 
using Equation 5.8.  It is seen that a selection of the daily observation timeframe 
for this data would result in a significantly greater mean value and standard 
deviation for the 75 year EVD. 
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Figure 5.17.  A comparison of the transformation of the same data to a 75 year 
EVD observed in two separate timeframes. 

 
Estimation of Parameter Variability and Conduct of the Reliability Analysis 

With the selection of a 3 day observation timeframe and the characterization 
of the 3 day EVD mean and standard deviation, the variability of each 
parameter is investigated.  Although these particular 92 and 93 day datasets are 
best observed using 3 day maxima, neither distribution parameter reaches a 
stable value within the 90 days.  This is illustrated by Figure 5.18 which, 
beginning second recorded maximum value (after 6 days of monitoring), shows 
the rolling mean and the rolling standard deviation for sensor 26-28 Eastbound.  
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Figure 5.18.  Beginning with the second observation, (a) the mean and (b) the 
standard deviation of the maximum values as each additional 3 day maximum is 

recorded. 
 

Error based approach 
Table 5.5 and Table 5.6 are utilized to select the coefficients for the error-

based approach (Equation 5.16).  From these tables, a = 0.1 for 30 data 
observations and b = 0.045 for the 3-day observation timeframe (interpolated).  
Using this information and sensor 26-28 Eastbound as an example, εobs is 
normally distributed with parameters ~N(0, 1.43) where 14.26 x 0.1 = 1.43 MPa 
for 30 data observations.  Likewise, εtimeframe is normally distributed with 
parameters ~N(0, 0.642) where 14.26 x 0.045 = 0.642 MPa.  Table 5.9 shows 
the random variable distributions, parameters, and sources utilized to conduct a 
FORM analysis for the performance function identified in Equation 5.16.  All 
parameters are reported as stresses in MPa (linear elastic behavior has been 
assumed in this work).  Also, each distribution is reported in terms of its mean 
and standard deviation. 

Conducting the analysis, the reliability index for the upper truss chord above 
the support is β = 8.99 and for the upper chord at bridge midspan is β = 9.28.  
These results are consistent with the park and crawl tests conducted after 
construction (Figure 5.12) and the bridge maintains a high level of in-service 
safety.  It is noted that this particular structure has an extremely low live to dead 
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load ratio and that the monitoring stresses are also very small with relation to 
the yield stress of monitored members. 

 
 
 
 
 
 
 
 

 
 
 
 
 

Member Random Variable
Distribution and 

Parameters (MPa) Source
R Normal (380, 28) Frangopol et al., (2008)
L D Normal (92.7, 4.9) Frangopol et al., 2008

L L Gumbel (23.03, 1.23)
Monitoring data
(75 yr EVD)

ε obs Normal (0, 1.43) Estimated 
ε timeframe Normal (0, 0.642) Estimated 
R Normal (380, 28) Frangopol et al., 2008
L D Normal (109, 5.7) Frangopol et al., 2008

L L Gumbel (14.0, 0.68)
Monitoring data
(75 yr EVD)

ε obs Normal (0, 0.913) Estimated 
ε timeframe Normal (0, 0.411) Estimated 

Table 5.9. Reliability analysis distributions, parameters, and sources (error-based approach)

Span 26-28 Upper 
Chord Eastbound 

(Midspan)

Span 16-18 Upper 
Chord Eastbound 

(Support)

 
Approach treating monitoring-based parameters as random variables 

Treating the monitoring-based live load parameters as random variables, the 
variability of each parameter is estimated using Equation 5.13.  Applying this 
equation, the variability of both the mean and the standard deviation of the 3 
day EVD is 

 

Span 26-28:      MPa
m
Yn

YnYn
221.0

31
23.1

====
σ

σσ σμ      (5.20) 

 

Span 16-18:      MPa
m
Yn

YnYn
124.0

30
684.0

====
σ

σσ σμ      (5.21) 

 
It is again noted that the magnitude of these deviations is extremely small and 
moreover with respect to member capacity.  If instead one considers the 
coefficient of variation of the mean and standard deviation with respect to the 
estimated variability, they are approximately 2% for the mean and 17% for the 
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standard deviation for both sensors.  For this analysis Table 5.10 shows the 3 
day EVDs, the 75 year EVDs, and the variability of the EVD mean and standard 
deviation parameters.   

 
 
 
 
 
 
 
 
 
 
 

Sensor Descriptor 3 Day EVD 75 Year EVD
Number of Observations m = 31 n = 9131

mean 23.03
standard deviation 0.221
mean 1.23
std. deviation 0.221

Number of Observations m = 30 n = 9131
mean 14.00
standard deviation 0.124
mean 0.684
std. deviation 0.124

Span 16-18
Eastbound sensor 
above support

m  = 30

μ Y  (MPa) 9.13 14.00

σ Y (MPa) 0.684 0.684

Table 5.10.  Based on approximately 90 days of monitoring data, the 3 day EVD, the transformed 75 year 
                    EVD, and the variability of the EVD mean and standard deviation parameters

Parameter Variability

Span 26-28
Eastbound sensor at 
bridge midspan

m  = 31

μ Y (MPa) 14.26 23.03

σ Y (MPa) 1.23 1.23

 
The 75 year EVDs shown in Table 5.10 are now used for the reliability 

analysis of these members.  Since the calculation of the reliability index 
requires the mean and standard deviation of the Type I EVD (one value for each 
parameter), incorporating the results of Table 5.10 into a reliability analysis 
requires multiple iterations of the analysis using each time different realizations 
of the EVD parameters.  To do this, a Monte Carlo simulation of the reliability 
analysis is conducted that randomly changes the mean and standard deviation 
parameters according to the variability reported in Table 5.10 resulting in a 
distribution of the reliability index.  Table 5.11 summarizes the parameters for 
the analysis.  Elastic behaviour is assumed and each distribution is characterized 
by its mean and standard deviation. 

Conducting the analysis, the mean reliability index for the upper truss chord 
at bridge midspan is β = 9.297 and for the upper chord above the support is β = 
8.994.   These results are also consistent with those of the park and crawl tests 
conducted after construction (Figure 5.12) and they indicate that the bridge 
maintains a high level of in-service safety.   
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 Table 5.11.  Reliability analysis distributions and parameters (parameter uncertainty approach)

Member Random Variable
Distribution and
Parameters (MPa) Source

R Normal (380, 28) Frangopol et al., (2008)
L D Normal (92.7, 4.9) Frangopol et al., (2008)

L L Gumbel (23.03, 1.23) *
Monitoring data
(75 yr EVD)

R Normal (380, 28) Frangopol et al., (2008)
L D Normal (109, 5.7) Frangopol et al., (2008)

L L Gumbel (14.0, 0.68) *
Monitoring data
(75 yr EVD)

Span 26-28
Eastbound Upper 
Chord at Midspan

Span 16-18
Eastbound Upper 
Chord at Support

* These parameters are random variables themselves as indicated in Table 5.10

 
 
 
 
 
 
 
 
Figure 5.19 depicts the distribution of the reliability indexes based on 2000 

simulations of the analysis carried out for each member.  Because this particular 
structure experiences small live load stresses relative to both its capacity and 
dead load, the reliability index is large in magnitude and the variability of the 
EVD parameters has little impact on the reliability index although a clear 
distribution is present.  This result is not to be expected for all structures, and 
especially not for short span bridges.  Regardless, the methodology provides a 
rational approach for the inclusion of monitoring data into a reliability analysis 
that considers both time effects and the treatment of the uncertainties inherent to 
any monitoring data set. 
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Figure 5.19.  Distribution of the reliability index for the eastbound sensors located 

(a) at bridge midspan and (b) above the support. 
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5.5 Conclusions 
The major findings obtained from Chapter 5 are summarized as follows: 
 
1. Extreme value statistics can be applied to bridge monitoring data to 

characterize monitoring based live load distributions for use in a reliability 
analysis.  Although the total live load demand is the effect of many 
processes that occur at different and varying frequencies, the end result 
(demand upon the structure) can be viewed holistically and an extreme 
value distribution characterized.  The application of extreme value statistics 
in this manner is advantageous because it provides a simple and efficient 
data processing approach and prevents the difficult modeling of vehicle 
weights, speeds, configurations, side-by-side truck crossings, wind effects, 
temperature effects, etc.  Furthermore, the asymptotic behavior of extreme 
value distributions provides a mechanism to incorporate time effects into 
the analysis.  Once defined in any observation timeframe, a transformation 
can be utilized to relate the EVD to the desired return period consistent with 
code requirements.    

2. The characterization of EVD parameters will always occur with less than 
perfect information.  Because the live load on highway bridges is highly 
random and because monitoring based assessments will occur in short 
intervals with respect to the lifetime of the structure, it is necessary to 
optimize the timeframe from which maximum values are selected.  This 
optimization must balance the benefit of using a longer observation 
timeframe that allows short-term fluctuations to average out against the 
disadvantage of having less maximum values available with which to 
characterize the distribution.  The optimal timeframe can be obtained by 
creating the vectors of maximum values for timeframes of increasing length 
and be selecting the timeframe with the lowest standard deviation.   

3. Once defined, EVD parameters are subject to certain degree of variability 
based upon how many point estimates were used for their characterization.  
It was demonstrated that the Central Limit Theorem can be utilized to 
determine the variability of the mean and standard deviation parameters of a 
Type I Gumbel EVD formed from the effects of separate random processes.  
This result enables the estimation of parameter variability directly from the 
number of maximum values in the data set and their standard deviation.  
Separately, coefficients were introduced to estimate this variability in terms 
of error.  The introduced coefficients are preliminary in this study and need 
much further refinement.  
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4. The parameter variability of a monitoring based distribution can be 
addressed within a reliability analysis in two ways.  If the distribution 
parameters are considered as random variables, multiple simulations of the 
analysis can be conducted in which the distribution parameters are 
randomly selected.  For this approach, the end result is a distribution of the 
reliability index which can be utilized for maintenance and management 
decisions.  If instead an error based approach is utilized, a more traditional 
reliability analysis is conducted with the addition of the error term (s) which 
results in one realization of the reliability index.   

5. While the proposed approach to characterize monitoring-based distributions 
has a number of strengths, it also has some limitations.  Because only 
maximum values are considered, a significant amount of information is 
discarded which likely eliminates a more detailed study of the underlying 
phenomenon and contributing sources of uncertainty.  The method is best 
suited for a top-down analysis where simplified models of resistance and 
demand are employed to calculate structural safety or as a tool to 
specifically determine the live load distribution within a more detailed 
bottom-up analysis.  The proposed approach may also prove useful in 
determining when more detailed inspections or analysis of the structure are 
necessary by providing in-service assessments of the reliability index over 
time.  Future work on this method will investigate the development of 
metrics that indicate changes in structural performance over time based on 
changes in the EVD parameters.       
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Chapter 6 
 
 
 

LIFETIME STRUCTURAL HEALTH 
MONITORING BASED ON SURVIVOR 
FUNCTIONS, HAZARD FUNCTIONS, AND 
COST 
 
 

Abstract 
 

This chapter presents different approaches to the time-dependent reliability 
problem.  Beginning with basic reliability concepts and the need for structural 
reliability (as a subset of classical reliability) for the performance-based analysis 
of civil infrastructure, the differences, assumptions, and limitations for each 
approach are discussed.  The motivation for this chapter is threefold.  First and 
especially to the new researcher, it may not be clear what basic principles are 
being combined, what assumptions are being made, or what limitations are 
present in the provided model when reading the literature.  It is possible to 
inappropriately combine principles from the different approaches, misinterpret 
the implications of the assumptions associated with each approach, or to not 
understand which model is best suited for a particular application.  This drives 
the second motivation for the chapter which is to investigate if any particular 
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approaches are best suited for the inclusion of SHM and how monitoring can fit 
into each of the approaches.  Lastly, the third motivating factor for this chapter 
is to promote the identification of what adoptions in concert (e.g. which 
common metrics and management guidelines) are required to implement, 
compare, and contrast SHM-enabled time dependent reliability analyses.  An 
application is provided.  This application includes risk and presents an approach 
to investigate the utility of monitoring in a prior analysis to provide an estimate 
of the monitoring benefit for use as a consideration for the design of the 
monitoring system.   

6.1 Introduction 
Reliability is often reported through the reliability index simply as a number, 

e.g.  β = 3.8.  Likewise, risk is typically reported with a dollar amount, e.g. 
$230,000.  Although such numbers can serve as a general comparison to a like 
analysis, they are not crisp and raise additional questions.  Are these numbers 
cumulative or based on a point-in-time analysis?  Are time effects considered 
and if so how?  Are the values conditioned on past safe performance?  Under 
what conditions is the analysis conducted and for what period of time?  To fully 
understand the results of a reliability or risk analysis, these questions must be 
clearly addressed in the model description or aside the reported values.   

The underlying concepts for reliability and lifetime characteristics are often 
introduced using actuary statistics.  For example, if one can observe a large 
population of living organisms over their entire lifespan, then one can begin to 
relate quantities such as the probability of death at any particular time or within 
any particular interval for the population.  Likewise, for any specific age one 
can estimate the percentage of the population that is no longer living or its 
complement, the percentage of the population still surviving.  Instead, if an 
analysis conditions on past safe performance (the fact that a particular member 
of the population is still living at a particular time), then the future likelihood of 
failure (death) can be calculated for any future time or time interval.   

These concepts can be used to define lifetime functions that describe the 
reliability of an item, member, system, or structure over time.  These functions 
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(in the order described in the preceding paragraph) are the probability density 
function of the time to failure f(t), the cumulative distribution function of the 
time to failure F(t), the survivor function S(t), the hazard function h(t), and the 
cumulative hazard function H(t).  Each function is completely defined in 
Section 6.2.  The relationships defined by these functions are also termed 
lifetime characteristics. 

The use of lifetime functions and the description of lifetime characteristics 
have been extended to and have proven useful in the field of mechanical 
engineering.  However, instead of death (as compared to description of actuary 
statistics), a clear measure of acceptable performance must be specified and the 
conditions under which an experiment is performed become important.  For 
example, the acceptable performance of a machine piston (e.g. the condition 
that it exhibits less than a 0.001 loss of diameter thickness due to wear) might 
be investigated with respect to 10000 operating hours at 5000 cycles per minute 
at a temperature of 200°C.  For such an experiment, a change of any of the 
parameters (time, cycles/min, or temperature) results in a change in its 
reliability and the associated lifetime functions.  Despite this sensitivity to 
operational and environmental conditions, reliability concepts are useful for 
mechanical engineering applications because the entire lifetime of machine 
components can often be observed and because the conditions can often be 
controlled across large numbers of experiments.   

The extension of reliability concepts into civil engineering again increases 
the assumptions required and the problem complexity.  For civil structures, 
acceptable performance is defined using a limit state.  Although a limit state can 
be defined by structural collapse, rupture, overturning, etc., most often a limit 
state is used to define a threshold of safe performance (e.g. the onset of 
yielding, excessive deflections, or damage).  Three primary challenges present 
themselves in collecting the statistical data required to define the performance 
of civil structures with respect to defined limit states.  First, limit states may not 
be easily observable.  Detecting such events such as the yielding of the 
outermost fiber, debonding of rebar within reinforced concrete, or the initiation 
of corrosion requires very specific and dedicated monitoring or testing 
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regimens.  To date, programs that support such databases are not fully 
developed.  Second, the operational and environmental conditions are not 
controllable or consistent across the observation of any particular structure or 
especially across the observation of different structures.  Loads (of all types), 
environmental stressors, and the aging process are all random.  Moreover, each 
type (material and structural configuration) and length of structure will 
experience these conditions differently (e.g. short span structures and long span 
structures have inherently different responses to traffic loading).  
Comparatively, civil structures do not offer the same possibility for controlled 
experiments afforded to many mechanical engineering applications.  Third, the 
lifetime of structures is long enough (in some cases centuries) and extreme load 
events and combinations of interest (e.g. flood, hurricane, accident, or 
overloaded truck) are infrequent and random enough that characterizing 
accurate lifetime characteristics via statistical observation is impractical if not 
impossible. 

In response to these challenges, the field of structural reliability was 
developed to use probabilistic data to calculate and predict the probability of a 
limit state violation for engineered structures at any stage of their service life 
(Melchers, 1999).  The result of such calculations is reported as a probability of 
failure, which is equivalent to the probability a limit state violation occurred.  
The reported results are dependent on the resistance and load models employed 
which are most often themselves functions of time for civil applications.  This 
requires either that time effects are incorporated into the load and resistance 
terms enabling the evaluation of the integral in a time invariant manner, or the 
use of methods to evaluate the integral over time with the resistance and load 
terms remaining functions of time.   

Although related, there are distinct differences between the actuary example 
provided, the mechanical engineering piston description, and that of structural 
reliability.  In forming an analysis, it is important to understand and to clearly 
state how the probability of failure is obtained.  Is it statistically observed?  Are 
environmental conditions present?  Is it based on expert opinion/belief?  Is it 
calculated using structure-specific parameters?  If it is indeed calculated, then 
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particular attention must be placed upon correctly identifying time effects for 
both the resistance term(s) (typically decreasing in time) and for live loads 
(typically increasing in time).  For example, the load term(s) in particular should 
be consistent with the methodology utilized for management decisions.  It is 
possible to use a performance based live load that increases in time with the age 
of the structure and it is also possible to use a live load that is calibrated to a 
code requirement and held constant over time (e.g. a 75 year live load).  

This chapter discusses several approaches for the construct of lifetime 
functions for use in a reliability-based life-cycle analysis for civil structures.  
Different modelling choices and their implications are demonstrated.  After 
developing the lifetime functions in a classical sense, the extension to structural 
reliability concepts is presented.  Advantages, disadvantages, and model 
limitations are illustrated to include the incorporation of risk in life-cycle 
calculations.  The primary motivation for this investigation is that a critical 
understanding of each approach assists the development of monitoring 
strategies and the identification of common metrics (adoptions in concert) that 
enable the comparison of different modelling approaches and monitoring 
alternatives.  The potential impact of SHM is discussed for each approach and 
the quantification of monitoring utility is demonstrated using life-cycle 
calculations.  Lastly, a method to estimate the anticipated monetary benefit of 
SHM over the life of a structure and to use this estimation as a design constraint 
for the monitoring system is presented. 

6.2 Classical Lifetime Functions 
The time to failure of a component is defined as the time elapsing from the 

time the component is put into operation until it fails for the first time (Hoyland 
and Rausand 1994).  This time to failure is uncertain and it is natural to interpret 
it as a random variable T (Hoyland and Rausand 1994).  Statistical data 
collected for the service life of previously and currently used similar 
components can be compiled into histograms and frequency diagrams which are 
fitted into the best fit time to failure PDF distributions.  It is this therefore the 
probability density function of the time to failure f(t) which provides the link 

175 



Thomas B. Messervey Lifetime SHM based on Survivor Functions, Hazard Functions, and Cost  
 
 
between available statistical data and predictive lifetime models (Okasha and 
Frangopol, 2008). 

The Weibull distribution is often used in the aerospace industry, mechanical 
engineering, and manufacturing to model the time to failure probability density 
function (PDF) (Frangopol and Okasha, 2008).  It has also been used in the field 
of structural engineering.  One example is used in van Noortwijk and Klatter 
(2004) who used a Weibull distribution to model the time to failure of bridges 
based on a study of in-service bridges and demolished bridges in the 
Netherlands.  The PDF of the Weibull distribution can be defined as (Leemis, 
1995) 

 
κλκλκλ )(1)()( t

f ettf −−=     for   t, κ, λ > 0         (6.1) 
 

where λ is a scale parameter and κ is a shape parameter.  Figure 6.1 shows the 
PDF of a Weibull distribution with the parameters λ = 0.05 and κ = 2.   
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Figure 6.1.  Geometric relationship between the PDF of the time to failure f(t), the 
survivor function S(t), and the cumulative probability of failure F(t) (adapted from 

Frangopol and Okasha, 2008). 
Reasonably, Figure 6.1 might apply to a bridge deck as most failures (in this 
figure) occur between years 10 and 25.  This PDF would be developed from 
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statistical observations of the performance of many bridge decks operating 
under many different environmental conditions.  It is noted that the area under 
the PDF must be equal to one. 

Figure 6.1 is the desired starting point for any lifetime analysis.  Once 
defined, each of the other lifetime functions can be quickly derived from f(t).  
One limitation of f(t) as described above is that it is obtained from statistical 
observations.  As such, the accuracy and applicability of the model will depend 
on whether or not the data collection process (type of structure, environmental 
conditions, and usage) is representative of the individual structure considered 
for analysis when using the model.  Ideally, separate and uniquely defined f(t) 
functions would be required for each type of bridge deck, operating under 
different types of environmental conditions, and undergoing different types of 
loading.  Of course, this is not possible.  The importance of structure type, 
environmental conditions, and usage across bridge components on these types 
of curves/functions is currently unknown.   

Although there is room for interpretation, using statistical data to create f(t) 
is closer to an empirical/qualitative approach than it is to analytical/quantitative 
approach.  Using this method, SHM could improve the accuracy of the data 
collection process by better determining whether or not the failure condition of 
interest has occurred.  However, this is perhaps a limited use of the potential of 
SHM as the goal is typically to develop a structure-specific data-driven 
approach (e.g. performance-based).  The ability to update an empirical model 
using structure specific information would require the identification of 
structural data, environmental conditions, or loading data that could be 
correlated to the time to failure of structures exposed to similar conditions.  
Then, if provided (for example) 30 different f(t) curves for bridge decks under 
different operating conditions, monitoring could direct the user to the most 
appropriate f(t) curve.  Currently, condition specific f(t) curves are not available 
but data collection efforts that could support the construction of such functions 
are underway (FHWA, 2008).   

Structural reliability calculations offer one possibility to address the 
challenges or limitations associated with a model based on statistical 
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observation.  The same lifetime function relationships that can be developed 
using Figure 6.1 are applicable (or adaptable) across time dependent structural 
reliability approaches.  As such, they are developed and presented herein.   

Once the time to failure PDF is defined, it can be utilized to answer basic 
probabilistic questions such as what is the probability of failure within the first 
10 years, what is the probability of failure between years 10 and 20, and so on.  
Such questions are answered by integrating the PDF from the lower bound of 
interest to the upper bound of interest.  The time to failure PDF can also be 
utilized to construct the other lifetime functions.  The cumulative time 
probability of failure F(t) is defined as (Leemis, 1995)  
 

∫=≤=
ft

ff duuftTPtF
0

)()()(           (6.2) 

 
which captures the cumulative probability of failure up to any specified time of 
interest (and equal to 1 at the end of the assumed structural lifetime).  Instead of 
using the probability of failure, it may be desirable to use its complement, the 
probability of survival.  This is done using the survivor function S(t) which 
represents the probability that an item is functioning at any time t, and can be 
defined as (Leemis, 1995) 

 

∫
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−==≥=
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The survivor function is conceptually similar to the reliability profile or any 
other performance profile that shows the probability of safe performance over 
time.  These profiles are important because they are typically utilized for the 
conduct and planning of maintenance and repair activities once a safe 
performance threshold is established.  Using the same Weibull distribution 
characterized in Figure 6.1, Figure 6.2 shows both F(t) and S(t) over time.   
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Figure 6.2.  The cumulative probability of failure, F(t) and the survivor function, 
S(t) for a Weibull distribution with parameters κ = 2 and λ = 0.05. 

 
In many cases it may be desirable to condition on past safe performance (e.g. 
the fact that failure has not occurred).  The conditional survivor function 
demonstrates the effect of conditioning at one specific point in time and is 
defined as (Leemis, 1995) 
 

)(
)()(| aS

tStS aTT =≥        for   t > a           (6.4) 

 

Conditioning on past safe performance redistributes the future probability 
space such that the area under the PDF of f(t) would again be equal to one, F(t) 
would again start at 0, and S(t) is reset to 1.  Figure 6.3 illustrates the 
conditional survivor function for a = 15 assuming failure has not occurred prior 
to year 15.  It is noted that conditioning (also termed scaling) does not change 
the general shape of the survivor function.  Applied to civil structures, the idea 
of conditioning on past performance is very attractive as in-service structures 
are often assessed.   

 A conditional survivor function is specific to the point of time conditioning 
is applied.  For example, conditioning on safe performance at year 16 (e.g. a = 
16) in Figure 6.3 would result in a new and steeper profile.  An investigation of 
conditioning on safe performance across time can be conducted using the 
hazard function.  The hazard function expresses the conditional probability of 
failure in time (t, t+dt), given that failure has not already occurred as (Leemis, 
1995) 
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This function is often called the instantaneous failure rate.  Similar to f(t) its 
units are failures per unit time and its integration across a small time interval 
provides the probability of failure for that interval given no prior failure.  Unlike 
f(t) the hazard function must always be positive and non-zero and as such the 
area under all hazard functions is infinity. 
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Figure 6.3. Conditional survivor function at year 15 for a Weibull distribution with 

parameters κ = 2 and λ = 0.05. 
 

 

The cumulative hazard function H(t) or integrated hazard function does just this 
and conducts the integration of h(t) to capture the cumulative hazard as  

 

∫=
t

duuhtH
0

)()(      for  t  >  0          (6.6) 

 

The cumulative hazard is always increasing with an upper limit of infinity.  
With respect to life-cycle calculations, non cumulative hazard is typically 
utilized for risk calculations (e.g. to calculate the monetary value of the cost of 
failure for a desired time interval).  Figure 6.4 shows the hazard function h(t) 
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and the cumulative hazard function H(t) for the Weibull distribution shown in 
Figure 6.1.  It is noted that although this particular h(t) is linear, most are not, 
and also that the magnitude of the ordinate of H(t) is large in comparison to the 
other lifetime functions.   
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Figure 6.4.  Hazard function h(t) and the cumulative hazard function H(t) for a 
Weibull distribution with parameters κ = 2 and λ = 0.05. 

 
For the interested reader, Table 6.1 provides the equations and numerical results 
for the first 20 years of Figures 6.1 to 6.4.  
 

t f (t ) F (t ) S (t ) h (t ) H (t ) S T|T >15(t )
0 0.0000 0.0000 1.0000 - 0 1
1 0.0050 0.0025 0.9975 0.0050 0.0025 1
2 0.0099 0.0100 0.9900 0.0100 0.0100 1
3 0.0147 0.0222 0.9778 0.0150 0.0225 1
4 0.0192 0.0392 0.9608 0.0200 0.0400 1
5 0.0235 0.0606 0.9394 0.0250 0.0625 1
6 0.0274 0.0861 0.9139 0.0300 0.0900 1
7 0.0310 0.1153 0.8847 0.0350 0.1225 1
8 0.0341 0.1479 0.8521 0.0400 0.1600 1
9 0.0368 0.1833 0.8167 0.0450 0.2025 1

10 0.0389 0.2212 0.7788 0.0500 0.2500 1
11 0.0406 0.2610 0.7390 0.0550 0.3025 1
12 0.0419 0.3023 0.6977 0.0600 0.3600 1
13 0.0426 0.3446 0.6554 0.0650 0.4225 1
14 0.0429 0.3874 0.6126 0.0700 0.4900 1
15 0.0427 0.4302 0.5698 0.0750 0.5625 1
16 0.0422 0.4727 0.5273 0.0800 0.6400 0.9871
17 0.0413 0.5145 0.4855 0.0850 0.7225 0.9658
18 0.0400 0.5551 0.4449 0.0900 0.8100 0.9369
19 0.0385 0.5944 0.4056 0.0950 0.9025 0.9016
20 0.0368 0.6321 0.3679 0.1000 1.0000 0.8609

Table 6.1. Lifetime functions numerical values for a Weibull distribution with κ  = 0.05 and λ  = 2.
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6.3 Application of Lifetime Functions to Civil 
Structures 

There remains a gap between the theoretical possibilities of working with a 
distribution as defined in Section 6.1 and the practical characterization of such a 
distribution and use for a civil structure.  First, the characterization of such a 
distribution faces the challenges previously discussed (observability of limit 
states, changing operational/environmental conditions, and long lifespans).  
Another important question is to determine what exactly is being modeled and 
which distribution(s) are appropriate candidates for the model?  Non cumulative 
hazard functions h(t) are often utilized as an intuitive representation of the 
amount of risk associated an item at time t (Leemis, 1995).  In mechanical 
engineering, machinery components often have a “bathtub” shaped hazard curve 
as shown in Figure 6.5a.  There is an initial “burn in” period of high risk/hazard 
(A) where manufacturing defects result in failure or where components “wear 
in.”  This period is followed by a period of lower hazard associated with the 
anticipated normal use / function of the component (B).  Toward the end of the 
component’s planned life, the hazard increases due to old age, wear, fatigue, etc 
(C) (Leemis, 1995).   
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Figure 6.5.  Hazard profiles: (a) for a typical machinery component (adopted from 
Leemis (1995) and (b) for the global performance of a civil structure. 

 
A “bathtub” shape hazard profile also conceptually matches what is 
experienced/observed for civil structures as shown in Figure 6.5(b).  A period of 
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high hazard/risk occurs during construction (A) which is followed by a period 
of lower and steadily increasing hazard as the structure progresses through its 
early service life (B).  Failure studies have revealed that material defects, 
construction errors, or design errors often result in failure as deterioration 
begins to affect the structure, typically around year 35 for highway bridges 
(Frangopol and Messervey, 2007c).  Therefore, unlike a typical bathtub shaped 
curve, civil structures may have a period of heightened hazard at their midlife 
(C).  This is followed by a period of slightly lower and increasing hazard (D) 
until the structure reaches old age at which point time the hazard increases more 
rapidly (E).   

Figure 6.5(b) is deliberately not shown as a smooth curve because it may be 
impractical to model what is observed in reality with one continuous function.  
Instead, its characterization (hazard function h(t)) may be practically conducted 
using discrete intervals of time as shown in Figure 6.6(a).  Working with a 
discrete model changes none of the relationships between the lifetime functions 
and the models simply become discrete instead of continuous.  Figure 6.6(b) is 
utilized to notionally introduce the idea of using different distributions to 
characterize lifetime characteristics.  This figure shows the modeling of h(t) as 
three separate distributions.  Such an approach lends itself to the study and 
characterization of each hazard, construction failure (A), failure at midlife due 
to defects (B), and failure due to routine usage and old age (C), separately.   
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Figure 6.6.  Hazard models (a) discrete and (b) using separate hazards. 
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Because the capacity of a structure and the loads that act upon it are functions of 
time, the probabilities of failure that result from structural reliability 
calculations are descriptive of the time interval considered.     

6.4 The Construction of Time-Dependent Reliability 
Profiles 

Recalling Equation 2.6, the basic reliability problem when the resistance and 
load are independent is 

 

∫∫
>

=<−=
LR

LRf drdllfrfLRPp )()()0(          (6.7) 

 

The evaluation of the above convolution integral becomes considerably more 
challenging when one or both of the resistance or load terms are functions of 
time as  
 

)0)()(()( <−= tLtRPtp f            (6.8) 
 

If the instantaneous probability density functions fR(t) and fS(t) are known, the 
instantaneous probability of failure pf(t) can be obtained and integrated over 
time to find the cumulative probability of failure over time.  If the resistance is 
considered invariant, an alternate solution to this problem is to instead transfer 
the integration to the load effect which is then assumed to be representative over 
the entire period as an extreme value distribution (Melchers, 1999).  The 
reliability problem is then solved as a time invariant problem and the resulting 
probability of failure is cumulative and specific to the time (load effect) 
considered.  One interpretation or use of this approach would be to assess the 
minimum lifetime safety by considering the maximum lifetime load and the 
minimum lifetime resistance as 
 

)0)()(()( maxmin <−= LLLf tLtRPTp          (6.9) 
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This scenario of minimum resistance and maximum load effects is shown in 
Figure 6.7.  Because all parameters are treated as invariant with respect to time 
and the entire life of the structure is considered (for the time effects), the 
problem becomes equivalent to a time invariant reliability problem and the 
conditions present at the considered point in time (end of life) are assumed 
applicable to the entire life.  Strictly applying Equation 6.9 only, there is no 
possibility to condition on past safe performance or to appropriately quantify 
risk in any interval of time smaller than the entire lifetime.  Although this 
approach may be appropriate as a design benchmark or design check, it is not 
very appropriate for management decisions.  Instead, it is necessary to predict 
structural performance over time in a time dependent manner.    
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Figure 6.7. Modeling minimum lifetime safety as a time invariant reliability 
problem 

 
Methods to conduct a time dependent reliability analysis are distinguished 

by whether the load and resistance terms are treated as continuous functions 
(instantaneously) or if their time effects are calculated specific to the point in 
time analyzed.  Three approaches are briefly described herein.  They are:  

 
• The time discretized approach 
• The point-in-time approach 
• The cumulative-time approach 
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Time Discretized Approach: The time discretized approach evaluates reliability 
over time by considering small and discrete increments of time (with respect to 
the overall lifetime).  For civil structures, one year intervals are typically 
selected (Melchers, 1999).  All analysis random variables (load and resistance 
terms) are related to the selected time interval and the analysis is carried out 
resulting in a probability of failure that corresponds to and is specific to the 
length of time considered.  A cumulative model can be constructed by summing 
the probability of failure for each time interval across time if statistical 
independence is assumed between the time intervals.  The main advantage of 
the time discretized approach is its simplicity.  The main disadvantage is the 
assumption of statistical independence between time intervals.   

 
Point-in-time Approach:  This cumulative time integrated approach is an 
adaptation of Equation 6.9 and the scenario presented in Figure 6.7.  However, 
instead of considering the time effects at the end of the structure’s lifetime only, 
they are considered successively at many points in time across the structure’s 
lifetime.  Intuitively, this can be thought of analyzing the entire lifetime of the 
structure many times as the structure ages.  Each calculation provides the 
probability of failure specific to the point in time considered.  For example, at t 
= 30, the degradation at year 30 is used for the resistance term and a 30 year 
EVD is used for the load effect.  A time invariant calculation of the reliability is 
conducted and the resulting probability of failure represents the probability of 
failure at year 30.  Figure 6.8 shows this process at three points during the 
structure’s lifetime.  Of course, more points in time are required for an effective 
analysis of the evolution of the failure probability over the life of the structure.  
Annual increments are likely appropriate.  Each successive analysis provides 
F(t) for that point in time.  The survivor function S(t) can be created directly as 
1-F(t) at any point in time.  By analyzing the change between intervals, f(t) and 
h(t) can be created.  This change between intervals can also be utilized to 
quantify the risk particular to a certain interval or set of intervals.   
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Figure 6.8. Point-in-time approach using three points of analysis 
 
The main advantage of the point-in-time approach is that it allows a time 
invariant calculation of the probability of failure.  Over time, loads and 
resistances can be changed, although the net effect of the change in these terms 
must result in an increase in the probability of failure (with respect to the last 
point in time analyzed).  This is ensured if extreme value theory is utilized to 
account for the load effect.  The main disadvantage of the approach is that it is 
inherently a discrete combination of multiple analyses.  If employed, SHM can 
be utilized to characterize the live load effect for any considered lifetime as 
developed in Chapter 5.  SHM can also be utilized in this approach to 
characterize or update the resistance terms or degradation process.   
 
Cumulative-time approach:  Stochastic process theory offers a continuous 
approach to the evaluation of the reliability problem by treating either or both of 
the load and resistance terms as continuous functions of time.  Typically, a 
degradation function is used for the resistance and instead the load is treated as 
a stochastic process.  For this reason, the approach is often referred to as an 
instantaneous approach because instead of transferring the load effects 
associated with a length of time through the use of an extreme value 
distribution, the approach considers the realization of dynamic loads as a 
stochastic process.  The stochastic process may consider individual load pulses 
or may be modeled as a random function of time.  Most often, a Poisson model 
is employed with a mean occurrence rate λ.  Load intensities Si can be assumed 
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as identically distributed and statistically independent random pulses of constant 
amplitude described by the cumulative distribution function FS(s).  For a 
component subjected to a single load, the cumulative probability of failure can 
be calculated as Mori and Ellingwood (1994) 
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where R0 is the initial resistance, fR0(r) is the probability density function of R0, 
and g(t) = E[G(t)] where G(t) is the degradation function (Frangopol and 
Okasha, 2008).  Equation 6.10 must be evaluated by Monte Carlo simulation for 
realistic deterioration mechanisms (Ciampoli and Ellingwood, 2002). 

Applications using this approach for the conduct time dependent reliability 
analysis can be found in Melchers (1999), Mori and Ellingwood (1992), Enright 
and Frangopol (1999a) and Enright and Frangopol (1999b).  The main 
advantage of this approach is that it is continuous.  The main disadvantage is its 
complexity and computational effort.  If employed, SHM can be utilized to 
update or better characterize the degradation function and to characterize or 
update the Poisson process utilized to model the load effect. 
 
Comments on the three approaches and the construct in general  Each approach 
provides the ability to analyze intervals within a structure’s planned service life.  
This is necessary to optimize inspection planning, maintenance activities, repair 
actions, and to appropriately quantify risk.  The time discretized approach is 
simple but approximate and may have very serious limitations in its application 
to civil structures.  In contrast, the point-in-time approach directly defines F(t).  
It is noted that there is a fundamental difference between the time-discretized 
approach which considers successive independent intervals of time as a series 
system and the point-in-time approach which analyzes the effect of increasing S 
and decreasing R within various points-in-time.  Instead, the cumulative time 
approach offers a continuous construction of F(t) by treating the resistance and 
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load terms as functions of time.  The approach is the most accurate, but also the 
most difficult to model and execute.  The selection of a particular model will 
likely depend upon the desired accuracy, the available resources (computation 
effort) available to model the problem, and the assumptions the engineer or 
infrastructure manager desires to make.   

6.5 Application 
The application begun in Chapter 4 is continued here for the point-in-time 

approach.  Figure 6.8 again shows the general scenario.  A 12.2 meter short 
span bridge is subjected to deterioration over time which decreases the section 
modulus of a W690x125 beam with an increasing degree of uncertainty.  The 
load is the average truck as determined in the Gindy and Nassif (2006) study 
which when placed at the position of maximum moment for this span results in 
a live load moment demand distribution assumed to be normally distributed 
with the parameters N(167.5, 77.2) kN-m.  The reliability investigation is 
conducted with respect to flexure which assumes elastic behaviour and uses the 
following performance function.   
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Figure 6.8.  Application load scenario and beam section loss over time. 
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An average daily truck crossing rate of n = 300 is assumed.  The appropriate 
live load effect for any point in time analysis is conducted using the extreme 
value distribution transformation equations (Equations 4.21-4.25) specific to the 
normal distribution (for this application).  For example, at t = 1 year  

 
n = (300 trucks/day)(365.25days/year)(1 year) = 109,575 trucks    (6.11) 
 

82.4)575,109ln(2 ==nα          (6.12) 
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with the result being the 1 year Type I Gumbel EVD with the parameters μYn = 
508.1 kN-m and μYn = 8.38 kN-m.  This live load is used only for the analysis 
conducted the point in time t = 1 year.  Changes in the live load for successive 
analyses reflect the increased number of trucks associated with length of time 
analyzed.  The resistance for each analysis is calculated as demonstrated in 
Chapter 4 and as depicted in Figure 6.8.  Table 6.2 reports the random variables, 
their descriptors, and sources utilized for the time dependent analysis.   

190 



Chapter 6 Effect of Monitoring on the Reliability of Structures 
 

Random Variable Distribution type. Mean, 
and Std. Deviation

Coefficient of 
Variation (COV) Source

Yield Stress, fy (MPa) N[386, 42.5] 0.11 Nowak and Yamani (1995)

Elastic Section Modulus, S (cm3)
Normal

variable with time variable with time calculated

Dead Load Moment, MDL (kN-m) N[290, 14.5] 0.05 Nowak and Yamani (1995) for COV

Average Truck
Live Load Moment, MLL (kN-m) N[167.5, 77.2] 0.46 Gindy and Nassif (2006)

Live Load Moment, MLL (kN-m) Gumbel
variable with time calculated calculated

Table 6.2. Random variables, descriptors, and sources

 
 

Reliability analysis software is utilized to evaluate the performance function 
shown in Equation 6.11 at successive one year intervals across the life of the 
structure for 75 years incorporating the appropriate time effects.  Figure 6.9 
shows the resulting cumulative failure probability CDF F(t) and the associated 
survivor profile S(t).    

 
 
 
 

 

 
 

 
 

 
Figure 6.9.  Failure probability F(t) and the survivor function S(t). 

 
These profiles can be notionally related to the reliability index or safety margin 
using  
 

)( β−Φ=fp            (6.16) 
 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 5 10 15 20 25 30
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 5 10 15 20 25 3

Time (Years)Time (Years)

Fa
ilu

re
 P

ro
ba

bi
lit

y,
 F

(t)

CDF
F(t)

Su
rv

iv
al

  P
ro

ba
bi

lit
y,

 S
(t)

SURVIVOR
S(t)

0

191 



Thomas B. Messervey Lifetime SHM based on Survivor Functions, Hazard Functions, and Cost  
 
 
For the first 30 years, the reliability performance profile is shown in Figure 
6.10.  Assuming a minimum reliability threshold of β = 2.0, the profile crosses 
the threshold during year 28.   
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Figure 6.9.  Time-dependent reliability profile for the first 30 years.   
 

The results of this particular problem (hypothetical short span bridge) are 
dominated by the compounding uncertainty associated with future predictions 
of the section modulus and by the characterization of baseline live load 
distribution from which the time effects are calculated.  SHM should therefore 
target these two parameters.  Evaluation of the resistance over time can be 
conducting using proof load techniques (e.g. park tests) as discussed in Faber et 
al. (2000).  Characterization of the live load distribution can be conducted using 
the techniques developed in Chapter 5.  A monitoring based live load 
distribution would no longer be dependent on a non site-specific traffic study or 
an assumption regarding the average daily truck volume.   

 
Prior Analysis to Estimate Monitoring Utility 

The utility of monitoring can be estimated over a structures service life using 
life cycle calculations to compare different performance profiles.  Distinct 
performance profiles can be obtained by making several assumptions regarding 
the anticipated benefit of monitoring.  Conceptually, Figure 6.10 illustrates the 
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anticipated result of the use of SHM and highlights four focal points which 
highlight reasons for the differences in the reliability profiles.  
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Figure 6.10. Anticipated differences in reliability profiles due to the inclusion of 
SHM. 

 
Beginning with the initial reliability index, an increase in this parameter is 

anticipated with the incorporation of monitoring (Figure 6.10, (1)); of course, 
this is just an assumption, since the results of monitoring could also indicate a 
decrease in reliability.  For the resistance parameters, a park or crawl test can be 
utilized to validate and update the initial input parameters.  System effects not 
specifically modeled, load distribution patterns not foreseen, composite 
behavior between members, and even the contribution of uncracked concrete for 
tensile stresses will result in differences for these random variables with respect 
to what was originally anticipated.  Once measured, Bayesian Updating can be 
utilized to combine monitored information with that used during design.  
Combined with the initial reliability index, the rate of deterioration determines 
when the first maintenance action is required.  The second focal point identifies 
different deterioration rates.  Deterioration processes are extremely random and 
it is anticipated that monitoring will reduce the uncertainty associated with 
deterioration parameters as shown in Figure 6.10(2).  Once the shape of the 
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reliability profile is established, inspection scheduling and maintenance actions 
can be optimized (Kong and Fragopol, 2005a).  In Figure 6.10, maintenance is 
conducted whenever a minimum reliability threshold of 2.0 is reached.  
Consequently, the reliability profiles have a different number and timing of 
required maintenance actions (Figure 6.10, (3)).  The fourth and last focal item 
identifies the difference in the reliability level between the profiles over time 
implying a difference in the life-cycle risk associated with each profile (Figure 
6.10, (4)). 

Estimating the utility of monitoring is demonstrated by extending the 
Chapter 6 application.  Figure 6.11 shows the impact of removing uncertainty 
from the reliability analysis.  Specifically, the standard deviation of the section 
modulus is reduced by 25%, 50% and treated quasi-deterministically (by 
assigning a very small standard deviation).  No other parameters are changed. 
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Figure 6.11. Effect of section modulus uncertainty on the reliability analysis. 
 
The assumption is made that monitoring can achieve a 50% reduction of the 

section modulus uncertainty over time.  Practically, this could be achieved 
through annual planned park tests on the structure.  A reliability analysis is then 
conducted for both the non-monitoring profile and the 50% reduction of section 
modulus standard deviation profile with respect to a minimum reliability 
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threshold of β = 2.0.  Each time either profile reaches the minimum reliability 
threshold, the beam is notionally replaced and the deterioration process restarts.  
Live load effects are not restarted (nor interrupted) in the analysis.  Each year 
the live load EVD is incremented by one additional year.  Of interest, no change 
of mean values (representing a more accurate characterization of the random 
variables) is investigated nor does the monitoring profile begin with a higher 
initial reliability index.  As such, the analysis is fairly conservative with respect 
to the anticipated benefit of monitoring.   
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Figure 6.12. Application reliability profiles with and without monitoring. 
 
Figure 6.12 shows the resulting reliability profiles with management actions 

over a 75 year service life.  For the non monitoring profile, beam replacements 
are required at year 28 and at year 56.  For the monitoring profile, one beam 
replacement is required at year 48.  Recalling Equation 4.4 

 

MONFREPINSPMTET CCCCCCC +++++= 000000         (4.4) 
 

the change in repair costs and the change in the risk costs (cost of failure) are 
investigated in this application.  Assuming an arbitrary beam replacement cost 
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of $200,000 the repair costs for the no monitoring and monitoring profiles 
respectively are 

 

937,88$
)04.1(

000,200$
)04.1(

000,200$
5628 =

+
+

+
=REPC        (6.17) 

 

439,30$
)04.1(

000,200$
48

0 =
+

=REPC          (6.18) 

 

The difference in risk costs is investigated by constructing the hazard 
profiles for both options over the service life using Equation 6.5.  The results of 
these calculations are shown in Figure 6.13.  
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Figure 6.18. Hazard curves with and without monitoring. 

 
Of interest, one cannot generalize that the monitoring profile has less risk.  For 
example, at year 40, it is the monitoring profile that has higher failure rate.  
However, one can state that the cumulative risk is lower across the monitoring 
profile.  This point is highlighted by Figure 6.19 which shows the cumulative 
hazard profiles with and without monitoring.   
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Figure 6.19. Cumulative hazard with and without monitoring. 

 
The hazard profile h(t) is most appropriate to calculate the cost of failure 

(risk cost) associated with each profile because the risk cost can be 
appropriately discounted when it occurs using net present value calculations.  
To make a comparison of the two profiles, a $10,000,000 consequence of 
failure C and a discount rate of r = 4% are assumed.  The choice of C is 
arbitrary, is reasonable for a small structure, and lacks a real world example for 
validation as conducted in Chapter 3 for a large scale structure (I35W failure).  
The choice for the discount rate is instead consistent with worldwide historical 
rates.  The risk cost is calculated using h(t) for each interval.  For example, for 
year 20, the non-monitoring profile has a hazard of h(20) = 0.001104.  
Therefore the risk during year 20 is 

 
Risk20 = CF20 = $10,000,000 x 0.001104 = $11,040      (6.19) 

 

which is discounted to its net present value as 
 

038,5$
)04.01(

040,11
20 =

+
=NPV          (6.20) 
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This process is conducted for each interval (e.g. 75 times) and the results are 
summed for the 75 year service life.  These calculations result in  

 

586,136$=FC      and             (6.21) 637,66$0 =FC
 

for the non monitoring and monitoring profiles respectively.  As such, the utility 
of monitoring with respect to these two reliability profiles is calculated as  

 

447,128$)637,66$439,30($
)586,136$937,88($0

=+
−+=−= ETETMON CCB          (6.22) 

 

This value of $128,447 can be utilized as a benchmark for the design and 
consideration of a monitoring system.  For a bridge manager, a potential cost 
savings of $128,447 is attainable through the collection of more precise 
information for the section modulus over time.  For the engineer designing a 
monitoring system, it can now be concluded that the system will be cost 
beneficial as long as the life-cycle cost does not exceed $128,447 and the 
system can indeed provide a 50% reduction of the section modulus standard 
deviation over time. 

This analysis did not investigate changes in inspection costs, preventive 
maintenance actions, or the optimization of maintenance and replacement 
activities.  The costs utilized (failure cost and beam replacement cost) were also 
reasonable, but arbitrary.  However, this analysis did provide a methodology for 
the inclusion of monitoring in a time dependent reliability analysis and an 
estimation of the utility for SHM alternatives.  The next critical step for such 
analysis and the consideration of more complex problems are guidelines 
(adoptions in concert) for the calculation of the consequence of failure, the 
structural lifetime to be considered, the discount rate, and the appropriate live 
load for use in the reliability analysis (e.g. performance based or calibrated 
against a specific return period).  Lastly, it is also noted that although SHM has 
the capability to greatly improve the results of a reliability analysis through the 
reduction of parameter uncertainty, these benefits are only meaningful if the 
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community as a whole adopts reliability and risk concepts for civil 
infrastructure assessment, performance prediction, and management.  

6.6 Conclusions 
The major findings obtained from Chapter 6 are summarized as follows: 
 
1. Classical reliability concepts that define lifetime functions/characteristics 

can be extended to the assessment and performance prediction of civil 
infrastructure.  In doing so, one must carefully specify if the model is based 
on statistical observation, expert opinion, or an analytical method. 

2. The extension of classical reliability concepts to the analysis of civil 
infrastructure is marked by several challenges.  These include long 
lifespans, constantly changing environmental conditions, and uncertain 
loading conditions.  The challenges make if difficult to obtain lifetime 
characteristics through statistical observation.  Structural reliability methods 
can provide an analytical approach to the characterization of lifetime 
characteristics.  Such approaches are well suited for structure specific 
considerations and the inclusion of SHM data.   

3. Civil structures are exposed to different hazards and different forms of risk.  
Typically an analytical approach (e.g. structural reliability) is limited to the 
prediction of a technical probability of failure.  Including non technical 
probabilities of failure (e.g. human error) in reliability analyses is an open 
area of research.  Although unanswered, an awareness of non technical 
probabilities of failure is appropriate. 

4. Three different methods for the construction of a time dependent reliability 
profile were briefly reviewed, the time discretized approach, the point-in-
time approach and the cumulative time approach.  Advantages and 
limitations were discussed.   

5. The point-in-time approach was demonstrated in an extension of the 
application started in Chapter 4.  In addition, a method to estimate the utility 
of monitoring in a time dependent reliability analysis through the reduction 
of uncertainty was presented and demonstrated.  In order to make the 
approach acceptable for comparison to other studies, the standardization of 
the type of reliability analysis and of the parameters that govern the analysis 
is required.        
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Chapter 7 
 
 
 

CONCLUSIONS 
 
 
 

7.1 Conclusions from the Investigation 
Monitoring technologies provide both the opportunity and the obligation to 

take the next evolutionary step in the design and management of civil 
infrastructure.  Data obtained through monitoring can be used not only to better 
understand existing structures, but the information can also be utilized to 
improve the design of future structures.  This opportunity fortunately comes at a 
time of critical importance for civil infrastructure as current approaches may not 
be adequately accounting for safety or keeping up with the rate of new 
deficiencies.  From this study, the following main conclusions are highlighted. 
 
1. Paradigm and/or Approach:  It is clear that for any future infrastructure 

management program, monitoring technologies will have a critical role.  
However, due to limited resources and potentially conflicting priorities or 
interests by different interested parties (owner, manager, researcher, user), 
the development, employment, and inclusion of SHM must occur within a 
paradigm appropriate for its consideration.  This means reliability based 
assessment, life-cycle management, and risk must be considered when 
comparing monitoring alternatives.  Both risk-based decision making and 
life-cycle management approaches are appropriate. 
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2. Adoptions in Concert:  Because monitoring technologies enter this 

environment of limited resources amongst interested parties with potentially 
conflicting objectives, coordinated and synchronized actions (adoptions-in-
concert) are necessary to facilitate synergistic and efficient solutions.  
Technologies must be adopted by and work within the programs utilized for 
asset management.  In turn, asset management must be supported by and 
exist within the broader context of performance-based engineering.  
Particular attention is needed in the standardization of performance metrics 
and methodology requirements.  These include the timespan for analysis 
(design life or warranty period), the requirement to include risk, guidelines 
for the calculation of the consequence of failure, minimum reliability 
thresholds, and discount rate.  Through such adoptions in concert, different 
SHM design alternatives can be evaluated for comparison.    

3. Top-down design of monitoring programs:  SHM is most commonly 
utilized as a bottom-up response to an existing problem or defect.  In 
contrast to this approach, there is both the need and the knowledge base to 
begin the planning and execution of the strategic employment of monitoring 
assets.  At the national level, network level, and individual structural level, 
this means allocating monitoring resources to the most critical structures, 
for the most critical materials and failure modes, at the most critical 
locations, at the optimal point in time.   

4. Bottom-up design of monitoring solutions:  Once a structure, failure modes, 
and critical location are selected, SHM provides the capability for structure-
specific performance-based design and assessment through the 
measurement of on site specific conditions and response data.  The 
implication is that SHM enables the development and use of models that 
employ and produce quantitative data instead of qualitative information.    

5. Calculating the utility of monitoring solutions:  Several possibilities exist 
with respect to facilitating the continued development and adoption of 
monitoring technologies for the assessment, performance prediction, and 
management of civil structures.  These include requirement by code or 
regulation, encouragement through advertising benefit or owner pride in the 
structure, economic savings through lower insurance rates against risk, or 
cost savings realized through more optimal inspection and management 
activities.  The tool that the researcher can best control is to provide 
methods to estimate the utility of monitoring solutions in life-cycle 
calculations.  By examining the effect of the reduction of uncertainty on any 
particular analysis and the templating of several likely outcome scenarios of 
how monitoring would change the performance profile over time, the 
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owner/manager can evaluate SHM alternatives on the basis of cost 
effectiveness.  

6. Characterization of monitoring-based live load distributions:  Live load 
effects are the result of many contributing factors which include vehicle 
weights, speeds, configurations, side-by-side truck crossings, wind effects, 
temperature effects and other types of loads.  Furthermore, these loads and 
their effects are a function of time.  Extreme value statistics can be applied 
to monitoring data to characterize the live load distribution with respect to a 
specific observation interval.  The approach is simple and efficient because 
it makes use of only maximum values within the observation timeframe and 
the difficult modelling of all contributing factors to the live load and its 
effects on a structure is replaced with a site specific measurement of these 
effects.  Furthermore, the asymptotic behaviour of extreme value 
distributions can be leveraged to transform the characterized live load 
distribution from the observation timeframe (typically short) to the code 
required return period for live loads (typically long). 

7. Treatment of parameter uncertainty:  Uncertainty is inherent to the 
collection and evaluation of monitoring data.  Aside from technical 
accuracy of the monitoring instruments themselves, the quality and stability 
of the recorded information will always be a function of the amount of data 
collected, and the length of the successive intervals (observation timeframe) 
utilized to characterize the data.  Two approaches for the treatment of this 
uncertainty were presented, one qualitative (error based approach) and one 
quantitative (based off the central limit theorem).  The end result of these 
approaches is either a more conservative estimate of the reliability index 
(qualitative) or the creation of a distribution of the reliability index 
(quantitative) as different realizations of the live load mean and standard 
deviation are randomly considered.   

8. Classical reliability, structural reliability, and lifetime characteristics:  
Because SHM enables a performance-based quantitative treatment of the 
time-dependent reliability problem, the basic principles governing 
reliability (both classical and structural approaches) can be revisited and 
considered in methodology development.  Qualitative models (based on 
expert opinion or statistical observation) are convenient, but may be limited 
in their ability to conduct a structure specific analysis.  In order to fully 
leverage SHM by incorporating structure specific loads, resistances, and 
their effects in a time dependent reliability analysis, several modeling 
approaches are available.  They include a time discretized approach, the 
cumulative time integrated approach, and the use of stochastic process 
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theory.  Each approach makes certain assumptions, produces a different 
result, and has advantages and limitations.  It is not concluded that any 
approach is inherently better.  It is instead concluded that the most 
appropriate approach depends on the analysis to be conducted, the required 
accuracy from the analysis, the time and computational effort available, and 
which assumptions the owner/manager/engineer desires to make.  

9. Documentation of the analysis:  Because of the breadth of the fields being 
combined (SHM, LCM, and Risk-based approaches) and the fact that each 
field is still being developed, a clear documentation of the methodology 
selected, assumptions, limitations, input parameters, and units is critical for 
work in this field.  Comparisons of different approaches on the same 
example or test bed case studies will prove extremely useful in the future. 

7.2 Areas for Continued Research 
Based on the work conducted in this study, the following areas are 

highlighted for continued research.  
 
1. Collection and evaluation of long-term monitoring data:  Any researcher in 

this field will benefit greatly from access to long term monitoring data 
across different structures and it is expected that many existing challenges 
will be quickly solved and many new challenges will be quickly developed.  
In this regard, the long term bridge performance program is very promising. 

2. Investigation of stochastic process theory, time dependent reliability, and 
SHM:  Chapter 6 needs to be expanded to include the application of a 
stochastic approach to a common example for comparison with other 
methods.  This approach may prove to be the most accurate and most 
appropriate for the investigation of civil structures although it may also 
prove to be the most complex. 

3. Time effects and Bayesian updating in a time dependent reliability analysis:  
Typically, Bayesian updating is conducted when new information becomes 
available.  A challenge with monitoring is that new information is always 
potentially available.  As such, the question becomes at what frequency 
should updating occur in a time dependent reliability analysis for the 
embedded random variable parameters?  The result is non trivial.  If one 
updates each month as opposed to each year or every 10 years, the 
performance profile will be dramatically different (assuming there is indeed 
a difference between the assumed and monitored data).  For the 
characterization of live loads, extreme value statistics provided a method to 
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calibrate monitoring information across time.  Developing an approach for 
Bayesian updating that accomplishes this same task (e.g. a rational 
approach for the consideration of time effects) is needed.  If this cannot be 
accomplished, then some rational guideline on the frequency of updating for 
bridge structures would be required based off the maturity and consistency 
of the monitored data.   

4. Further refinement of the basic principles:  For a time dependent reliability 
analysis, Chapter 6 raised some interesting questions that require further 
investigation.  How do the approaches differ between several common 
examples?  What accounts for these differences?  What are the 
computational tradeoffs?  Is any specific approach better suited for the 
inclusion of monitoring data?   

5. Making full use of previously conducted work and existing methods:  Once 
the construct of SHM-fed time dependent performance profiles with 
updating is firmly in place, existing work in the field can be leveraged.  
This includes the incorporation of system effects, the consideration and 
optimization of multiple maintenance/repair strategies, network analysis, 
and multiple performance criteria (cost and safety) multi-objective 
optimization. 

6. Further investigation of synergy between LCM and Risk-based decision 
making approaches:  The examples developed in this thesis focused mostly 
on the use of monitoring data to construct time dependent reliability 
profiles.  Generally, this type of analysis is specific to estimating the 
probability of failure.  Instead, risk-based decision making approaches are 
well suited to the consideration of additional hazards and exposures to 
include human error.  Also, the use and ability of monitoring to reduce the 
likelihood of a human error related failure is an interesting topic of study.  
Such a study could include the reduction in failure probability as well as the 
monetary benefit of such a reduction.  

 
 
 
 
 
 
 
 

205 



Thomas B. Messervey Integration of SHM into the LCM of Civil Infrastructure 
 
 

206 

 
 
 
 
 
 
 
 
 
 
 



 
 
 

References 
 

Akgul, F., and Frangopol, D.M. 2005. Reliability-based prediction of the lifetime 
performance of  existing bridges. Proceedings of the 9th International 
Conference on Structural Safety and Reliability, ICOSSAR’05, Rome, Italy, 
CD-ROM, 503-508. 

Aktan, A. E., Ellingwood, B. R., Kehoe, B., 2007.  Performance-Based 
Engineering of Constructed Systems.  Proceedings of ASCE Structures 2007, 
Long Beach, CA. 

Aktan, A.E., Chase, S., Inman, D. and Pines, D. 2001.  Monitoring and Managing 
the Health of Infrastructure Systems, Proceedings of the 2001 SPIE Conference 
on Health Monitoring of Highway Transportation Infrastructure. Irvine, CA, 
USA. 

Albrecht, P., and Naeemi, A., 1984.  Performance of Weathering Steel in Bridges, 
NCHRP Report 272, Washington, DC. 

American Association of State Highway and Transportation Officials (AASHTO).  
LRFD Bridge Design Specifications, 2nd ed., Washington, D.C., 2007. 

American Association of State Highway and Transportation Officials (AASHTO) 
Highway Subcommittee on Bridges and Structures, 2005.  Grand Challenges: A 
Strategic Plan. Available online at: http://www.transportation.org/?siteid=34 

American Association of State Highway and Transportation Officials (AASHTO).  
Manual for Maintenance Inspection of Bridges, 1970. 

Andersen T, Misund A., 1983.  Pipeline reliability: an investigation of pipeline 
failure characteristics and analysis of pipeline failure rates for submarine and 
cross-country pipelines. Journal of Petroleum Technology 1983 35:709–717, 
http://www.osti.gov/energycitations/product.biblio.jsp?osti id=6192657.  

Ang, A. H-S, 2007. An application of quantitative risk assessment in infrastructures 
engineering.  Proceedings of the Fourth Civil Engineering Conference in the 
Asian Region, CECAR 4, Taipei, Taiwan, June 25-28, 2007 (invited paper); in 

207 

http://www.transportation.org/?siteid=34


Thomas B. Messervey Integration of SHM into the LCM of Civil Infrastructure 
 
 
ASCE Tutorial & Workshop on Quantitative Risk Assessment, Taipei, Taiwan, 
June 25-28, 2007. 

Ang, A.H-S., and DeLeon, D., 2005. Modeling and analysis of uncertainties for 
risk-informed decision in infrastructures engineering. Structure and 
Infrastructure Engineering, Taylor & Francis, 1(1), 19-31. 

Ang, A.H-S. and Tang, W.H. 2007, Probability Concepts in Engineering Planning 
and Design Volume II, 2nd ed., Wiley, New York. 

Ang, A.H-S. and Tang, W.H. 1984. Probability Concepts in Engineering Planning 
and Design Volume II, John Wiley & Sons II, New York. 

Ang, A. H-S. and Tang, W.H., 1975.  Probability concepts in engineering planning 
and design: Vol. 1, basic principles.  John Wiley & Sons, ISBN: 0-471-03526-2. 

ASCE, Structural Health Monitoring Committee, 2000.  Benchmark studies.  
Available online at http://cive.seas.wustl.edu/wusceel/asce.shm/ 
benchmarks.htm (accessed June 19, 2007) 

ASCE, 2005. Report card for America’s Infrastructure, American Society of Civil 
Engineers, Reston, VA. Available online at www.asce.org/reportcard/ 
2005/index.cfm (accessed 22 May 2007). 

Associated Press, 2008.  Report: Money fears might have led to bridge collapse.  
Available at the internet news portal CNN at http://edition.cnn.com/2008/ 
US/05/21/bridge.collapse.ap/index.html  

Beck, J. L. and Katafygiotis, L. S. (1998), “Updating models and their 
uncertainties: Bayesian statistical framework”, J. Eng. Mech., ASCE,  124(4), 
455-461. 

Benjamin, R.G. and Cornell, C.A., 1970.  Probability, statics, and decisions for 
civil engineers.  McGraw Hill, Inc. ISBN: 007-004549. 

Bertrand A, Escoffier L. IFP, 1987.  Databanks on offshore accidents. In Reliability 
Data collection and Use of Risk and Availability Assessment, Colombari V (ed). 
Springer-Verlag: Berlin. 

BA 63/94 (1994). Inspection of highway structures.  Design manual for roads and 
bridges.  Vol. 3, Section 1, Part 5.  Highways Agency, London, U.K. 

BD 63/94 (1994).  Inspection of highway structures.  Design manual for roads and 
bridges.  Vol. 3, Section 1, Part 4.  Highways Agency, London, U.K. 

208 

http://edition.cnn.com/2008/%20US/05/21/bridge.collapse.ap/index.html
http://edition.cnn.com/2008/%20US/05/21/bridge.collapse.ap/index.html


Chapter 7 References 
 

Bijen, J., 2003.  Durability of Engineering Structures: Design, Repair and 
Maintenance. Woodhead Publishing Limited, Abington Hall, Cambridge, 
England. 

Blind H. The safety of dams. Water Power and Dam Construction 1983 35:17–21. 
Brownjohn, J.M.W., Moyo, P., Omenzetter, P, & Chakraborty, S. 2003.  Lessons 

from monitoring the performance of highway bridges.  Journal of Structural 
Control and Health Monitoring, 12(3-4), 227-244. 

Bucher, C., and Frangopol, D. M. 2006.  Optimization of lifetime maintenance 
strategies for deteriorating structures considering probabilities of violating 
safety, condition, and cost thresholds.  Probabilistic Engineering Mechanics, 
Elsevier, 21(1), 1-8. 

Bucher, C., Huth, O. and Macke, M. (2003), “Accuracy of system identification in 
the presence of random fields”, Proceedings of the 9th International Conference 
on the Applications of Statistics and Probability (ICASP 9).  

Budelmann, H. and Hariri, K., 2006, A Structural Monitoring System for RC-/PC-
Structures, Proceedings of the Fifth International Workshop on Life-Cycle Cost 
Analysis and Design of Civil Infrastructure Systems, Seoul, Korea; in Life-
Cycle Cost and Performance of Civil Infrastructure (ISBN 13: 978-0-415-
41356-5 (hbk)), Taylor & Francis Group plc, London, UK. 

Bureau of Transportation Statistics (BTS), 2003.  Transportation Statistics Annual 
Report, Report BTS. Department of Transportation: Washington, DC. 

CALREL: Liu, P., Lin, H., & Der Kiureghian, A. 1989. CALREL User Manual. 
Structural Engineering Mechanics and Materials Report No. UCB/SEMM-
89/18, University of California Berkeley. 

Canadian Highway Bridge Design Code (CHBDC), 2006.  Ministry of 
Transportation, Ontario, Canada. 

Casas, J.R., Frangopol, D.M., and Nowak, A.S., eds. (2002). Bridge Maintenance, 
Safety and Management, Book (ISBN 84-95999-05-6, 540 pages) and CD-
ROM (ISBN 84-89925-37-2), published by CIMNE, Barcelona, Spain. 

Casciati, S., 2004.  Damage detection and Localization in the Space of the 
Observed Variables.  Ph.D. Dissertation.  Department of Structural Mechanics, 
University of Pavia, Pavia, Italy. 

209 



Thomas B. Messervey Integration of SHM into the LCM of Civil Infrastructure 
 
 

Catbas FN, Susoy M, Frangopol DM., 2008.  Structural health monitoring and 
reliability estimation: Long span truss bridge application with environmental 
monitoring data, Engineering Structures, Elsevier (in press). 

Catbas, N.F., Zaurin, R., Frangopol, D.M., and Susoy, M., System Reliability-
Based Structural Health Monitoring with FEM Simulation. Proceedings SHMII-
3, Vancouver, B.C., Canada, 2007 

CDOT, 1998.  Pontis Bridge Inspection Coding Guide, Colorado Department of 
Transportation, Staff Bridge Branch, Denver, Colorado. 

Cesare, M. Santamarina, J., Turkstra, C., and Vanmarcke, E., 1993.  Risk-based 
bridge management.  Journal of Transportation Engineering.  ASCE, 119(5), 
pp 742-750. 

Chan, T. H., Ni, Y. Q. and Ko, J. M. 1999.  Neural network novelty filtering for 
anomaly detection of Tsing Ma bridge cables.  Structural Health Monitoring 
2000, Stanford University, Palo Alto, California, 430-439. 

Cho, A. and Van-Hampton, T., 2008.  Report: State DOT Ignored I-35W Bridge 
Recommendations.  Engineering News Record available online at 
http://enr.construction.com/news/transportation/archives/080522.asp accessed 
24 July, 2008. 

Chong K.P., Carino N.J., and Washer G., 2003.  Health monitoring of civil 
infrastructures. Smart Materials and Structures, 12: pp 483-493. 

Chryssanthopoulos, M.K., and Sterritt, G., 2002.  Integration of deterioration 
modelling and reliability assessment for reinforced concrete bridge structures.  
ARANet Intl. Colloquium, Glasgow, July 2002, CD-ROM Proceedings (16 
pages). 

Ciampoli, M.; Ellingwood, B.R. 2002.  Probabilistic methods for assessing current 
and future performance of concrete structures in nuclear power plants. 
Materials and Structures, 35, January-February, 2002, 3-14. 

Cohen, H., Fu, G., Dekelbab, W., and Moses, F., 2003.  Predicting Truck Load 
Spectra under Weight Limit Changes and its Application to Steel Bridge 
Fatigue Assessment.  Journal of Bridge Engineering, ASCE 8(5), 312-322. 

Connor, R.J., and McCarthy, J. R., 2006.  Report on Field Measurements and 
Uncontrolled Load Testing of the Lehigh River Bridge (SR-33). Lehigh 

210 

http://enr.construction.com/news/transportation/archives/080522.asp


Chapter 7 References 
 

University’s Center for Advanced Technology for Large Structural Systems 
(ATLSS), ATLSS Phase II Final Report No. 06-12. 

Connor, R.J., and Santosuosso, B. J., 2002.  Field Measurements and Controlled 
Load Testing on the Lehigh River Bridge (SR-33).  Lehigh University’s Center 
for Advanced Technology for Large Structural Systems (ATLSS), ATLSS 
Report 02-07. 

Corotis, R.B. 2003a. Socially relevant structural safety.  Applications of statistics 
and probability in civil engineering.  A der Kiureghian, S. Madanat, and J.M. 
Pestana, eds., 1, 15-24, Millpress, Rotterdam. 

Corotis, R.B. 2003b. Risk and Uncertainty.  Applications of statistics and 
probability in civil engineering.  A der Kiureghian, S. Madanat, and J.M. 
Pestana, eds., 1, 15-24, Millpress, Rotterdam. 

Cornell, C.A., 1967.  Bounds on the Reliability of Structural Systems.  Journal of 
the Structural Division, ASCE, 93(ST1): 171-200. 

Corotis, R.B., 1996.  Structural optimization: A lifetime project.  Proceedings of 
the 7th IFIP WG 7.5 Conference on the Reliability and Optimization of 
Structural Sytems.  D.M. Frangopol, R.B. Corotis, R. Rackwitz (eds.), pp 3-16. 

Cruz, P.J.S., Frangopol, D.M., and Neves, L.C., 2006. Bridge Maintenance, Safety, 
Management, Life-Cycle Performance and Cost, Book (ISBN 0 415 40322 7, 
1125 pages) and CD-ROM (ISBN 0 415 40325 1, 412 full length papers, 3484 
pages),  Taylor & Francis Group plc., London 

CTV News Online, Engineer Links Overpass Collapse to Steel Bars, available 
online at http://www.ctv.ca/servlet/ArticleNews/story/CTVNews /20061002/ 
overpasscollapse_causes_061002/20061002?hub=Specials&pr=showAll  
accessed 19 December, 2006. 

Das, P.C., 1998b.  Application of reliability analysis in bridge management.  
Engineering Structures, Vol. 20, No. 11, pp 957-959.  

Das, P.C., 1996.  Bridge management objectives and methodologies.  Bridge 
management 3, Inspection, Assessment, and Repair.  J.E. Harding, G.E.R. 
Parke, M.J. Ryall (eds.), University of Surrey, E & FN SPON London, pp 1-7. 

211 

http://www.ctv.ca/servlet/ArticleNews/story/CTVNews%20/20061002/%20overpasscollapse_causes_061002/20061002?hub=Specials&pr=showAll
http://www.ctv.ca/servlet/ArticleNews/story/CTVNews%20/20061002/%20overpasscollapse_causes_061002/20061002?hub=Specials&pr=showAll


Thomas B. Messervey Integration of SHM into the LCM of Civil Infrastructure 
 
 

Das P.C., 1994.  Reliability analysis of bridges: past and potential applications.  
Bridge Assessment Management and Design.  B.I.G. Barr, H.R. Evens, J.E. 
Harding (eds).  Elsevier Science B.V. 

Das, P.C., Frangopol, D.M., and Nowak, A.S., 1999. Current and Future Trends in 
Bridge Design, Construction, and Maintenance, The Institution of Civil 
Engineers, Thomas Telford (ISBN 0 7277 2841 5), London, 660 pages.   

Dedman, B., 2008a. Late Bridge Inspections Put Public at Risk, MSNBC Online 
available at http://www.msnbc.msn.com/id/20998261/ accessed 24 July 2008 

Dedman, B. 2008b.  Feds let States Delay Inspections of Bad Bridges.  MSNBC 
Online available at http://www.msnbc.msn.com/id/22300234/ accessed 24 July, 
2008 

Dedman, B. 2008c. Ga. Employee Faked Bridge Inspections, MSNBC Online 
available at http://www.msnbc.msn.com/id/23020686/ accessed 24 July, 2008 

Dedman, B. 2007.  I-35 bridge was rated among nation’s worst.  Available at the 
internet news portal MSNBC at http://www.msnbc.msn.com/id/20102713/ 
accessed 28 August, 2008. 

El-Borgi, S., Choura, S., Ventura, C., Baccouch, M., and Cherif, F., 2004.  Modal 
Identification and Model Updating of a Reinforced Concrete Bridge, Smart 
Structures and Systems, 1(1), 83-101. 

Enevoldsen, I., 2008.  Practical implementation of probability based assessment 
methods for bridges.  Proceedings of the Fourth International Conference on 
Bridge Maintenance and Safety, Seoul, Korea, July 13-17, 2008, IABMAS’08 
(Keynote). 

Enright, M.P., and Frangopol, D.M., 1999a.  Reliability-based condition 
assessment of deteriorating concrete bridges considering load redistribution.  
Structural Safety, Vol. 21, pp 159-195. 

Enright, M.P., and Frangopol, D.M., 1999b.  Condition prediction of deteriorating 
concrete bridges.  Journal of Structural Engineering, ASCE, Vol. 125 (10), 
pp1118-1125. 

Enright, M., Frangopol, D.M., Hearn, G., 1996.  Degradation of Reinforced 
Concrete Structures Under Aggressive Conditions. Materials for the New 
Millennium, (Ken P. Chong, Editor), ASCE, New York, Vol. 2., 1996. 

212 

http://www.msnbc.msn.com/id/20998261/
http://www.msnbc.msn.com/id/22300234/
http://www.msnbc.msn.com/id/23020686/
http://www.msnbc.msn.com/id/20102713/


Chapter 7 References 
 

Estes, A.C. (1997). A System Reliability Approach to the Lifetime Optimization of 
Inspection and  Repair of Highway Bridges.  Ph.D. Dissertation, Department of 
Civil, Environmental and Architectural Engineering, University of Colorado at 
Boulder. 

Estes, A. C., Frangopol, D. M., 2005a.  Life-cycle evaluation and condition 
assessment of structures. Chapter 36 in Structural Engineering Handbook, 2nd 
Edition, W-F. Chen and E. M. Lui, eds., CRC Press: 36-1 to 36-51. 

Estes, A. C., and Frangopol, D.M., 2005b.  Reliability-based condition assessment, 
Chapter 2 in Structural Condition Assessment, R.T. Ratay, ed., John Wiley & 
Sons, Hoboken, New Jersey, 2005; 25-66. 

Estes, A.C. & Frangopol, D.M., 2003.  Updating Bridge Reliability Based on 
Bridge Management Systems Visual Inspection Results.  Bridge Engineering, 
ASCE, 8(6), 374-382. 

Estes, A. C., Frangopol, D. M., 1999.  Repair optimization of highway bridges 
using a systems reliability approach.  Journal of Structural Engineering, ASCE, 
125(7), 766-775. 

Esther, Bubley, 1946.  New York harbor looking toward Manhattan from the 
footpath on Brooklyn Bridge (Photo).  Available at Brooklyn Museum online at 
http://www.brooklynmuseum.org/research/digital-collections/brooklynbridge/ 
photographs/full.php?imgNo=54.201.3 accessed 12 October, 2008. 

EUROCODES, Basis of design and actions on structures, BS EN 1990:2002. 
British Standards Institution, London, United Kingdom, 2002 

Faber, M.H., Reliability based assessment of existing structures, Prog. Structural 
Engineering Materials, 2000; 2, 247-253.  

Faber MH, Val DV, Stewart MG, 2000. Proof load testing for bridge assessment 
and upgrading. Engineering Structures, 22:1677–1689. 

Farrar, C. R., Baker, W. E., Bell, T. M., Cone, K. M., Darling, T. W., Duffey, T. 
A., Eklund, A. and Migliori, A.(2004), “Dynamic characterization and damage 
detection in the I-40 Bridge over the Rio Grande”, Los Alamos National 
Laboratory Technical Report LA-12767-MS. 

213 

http://www.brooklynmuseum.org/research/digital-collections/brooklynbridge/%20photographs/full.php?imgNo=54.201.3
http://www.brooklynmuseum.org/research/digital-collections/brooklynbridge/%20photographs/full.php?imgNo=54.201.3


Thomas B. Messervey Integration of SHM into the LCM of Civil Infrastructure 
 
 

Federal Highway Administartion (FHWA), 2008.  Long Term Bridge Performance 
(LTBP) program.  Available online at http://www.tfhrc.gov/structur/ltbp.htm 
accessed 12 September, 2008. 

Federal Highway Administration, National Bridge Inventory, available online at 
http://www.fhwa.dot. gov/bridge/nbi.htm (dated accessed May 2007). 

Federal Highway Administration (FHWA) 2005.  Bridge Preservation and 
Maintenance in Europe and South Africa.  Report FHWA-PL-04-007. 
Washington, D.C., USA. 

Frangopol, D. M. , 2007,  Perspective from US Researchers on Bridge Long-Term 
Performance Program, FHWA/NSF Workshop on Future Directions for Long-
Term Monitoring, Assessment, and Management, Las Vegas, Nevada, USA. 

Frangopol, D.M., 2003.  Preventive Maintenance Strategies for Bridge Groups – 
Analysis, Final Project Report to the Highways Agency, London, U.K., 139 
pages. 

Frangopol, D.M., 1999. Bridge Safety and Reliability, ASCE (ISBN 0-7844-0442-
9), Reston, Virginia, USA, 244 pages. 

Frangopol, D.M., 1998.  A Probabilistic Model Based on Eight Random Variables 
for Preventive Maintenance of Bridges, Progress meeting on optimum 
maintenance strategies for different bridge types, The Highways Agency, 
London. 

Frangopol, D.M., 1997.  Application of life-cycle reliability-based criteria to bridge 
assessment and design.  P.C. Das (ed.), Safety of Bridges.  Thomas Telford, 
London, pp 151-157. 

Frangopol, D.M., and Das, P.C., 1999.  Management of bridge stocks based on 
future reliability and maintenance costs.  Current and Future Trends in Bridge 
Design, Construction and Maintenance.  P.C. Das, D.M. Frangopol and A.S. 
Nowak (eds.).  Thomas Telford, London, pp 45-58. 

Frangopol, D.M., Kong, J.S., and Gharaibeh, E.S., 2001.  Reliability based life 
cycle management of highway bridges, Journal of Computing in Civil 
Engineering, ASCE 15(1), pp. 27-34. 

Frangopol, D.M., Kong, J.S., and Garaibeh, E.S., 2000.  Bridge management based 
on lifetime reliability and whole life costing: The next generation.  Bridge 

214 

http://www.tfhrc.gov/structur/ltbp.htm
http://www.fhwa.dot/


Chapter 7 References 
 

Management 4, M.J. Ryall, G.A.R. Parke, and J.E. Harding (eds.), Thomas 
Telford, London, pp 392-399. 

Frangopol, D.M., Lin, K.Y., and Estes, A.C., 1997b.  Reliability of reinforced 
concrete girders under corrosion attack.  Journal of Structural Engineering, 
ASCE, Vol. 123, No. 3, pp 286-297. 

Frangopol D.M., Liu M., 2007.  Maintenance and management of civil 
infrastructure based on condition, safety, optimization, and life-cycle cost. 
Structure and Infrastructure Engineering, Taylor and Francis,  3(1): pp 29-41. 

Frangopol DM, Liu M., 2006.  Life-cycle cost and performance of civil structures. 
McGraw-Hill 2006 Yearbook of Science and Technology. McGraw-Hill: 
NewYork, pp. 183–185 (invited article). 

Frangopol, D.M., and Liu, M. 2005. Multi-objective optimization for performance 
based bridge network maintenance under uncertainty, Proceedings of the 9th 
International Conference on Structural Safety and Reliability, ICOSSAR’05, 
Rome, Italy, CD-ROM, 3599-3605. 

Frangopol, D.M., and Messervey, T.B. 2009. Effect of SHM on reliability of 
bridges.  Chapter 25 in Monitoring Technologies for Bridge Management: 
State-of-the-Art, A. A. Mufti and B. Bahkt, eds., Multi-Science Publishing Co., 
Ltd., England (invited chapter, submitted). 

Frangopol, D.M., Messervey, T.B., 2008a.  Maintenance principles for civil 
structures using SHM.  Encyclopedia of Structural Health Monitoring.  Ed. 
Christian Boller, Fu-Kuo Chang, and Yozo Fujino.  John Wiley & Sons, Ltd (in 
press) 

Frangopol, D.M., and Messervey, T.B., 2008b.  Life-Cycle Cost and Performance 
Prediction: Role of Structural Health Monitoring.  Proceedings of the 
International Workshop on Frontier Technologies for Infrastructures 
Engineering.  23-25 Oct 2008, Taipei, Taiwan. 

Frangopol, D.M. and Messervey, T.B., 2008c.  Use of Structural Health Monitoring 
for Improved Civil Infrastructure Management Under Uncertainty.  Proceedings 
of WG7.5 Reliability and Optimization of Structural Systems. Toluca, Mexico, 
6-9 August, 2008.  (Keynote). 

215 



Thomas B. Messervey Integration of SHM into the LCM of Civil Infrastructure 
 
 

Frangopol, D.M., and Messervey, T.B., 2008d.  Quantifying the Benefits of Smart 
Technologies in a Life-Cycle Context.  Proceedings of the 3rd International 
Conference on Smart Materials, Structures, and Systems CIMTEC08.  8-13 
June, 2008, Sicily, Italy. 

Frangopol, D.M., and Messervey, T.B., 2007a. Lifetime oriented assessment and 
design optimization concepts under uncertainty: Role of structural health 
monitoring. Lifetime-oriented Design Concepts, 2007, Stangenberg, F., Bruhns, 
O.T., Hartmann, D., and Meschke. G., eds., Aedificatio Publishers Freiburg, 
2007, 133-145 (keynote paper). 

Frangopol, D.M., and Messervey, T., 2007b.  Risk assessment for bridge decision 
making. Proceedings of the Fourth Civil Engineering Conference in the Asian 
Region, CECAR 4, Taipei, Taiwan, June 25-28, 2007 (invited paper); in ASCE 
Tutorial & Workshop on Quantitative Risk Assessment, Taipei, Taiwan, June 
25-28, 2007, 37-42. 

Frangopol, D.M., and Messervey, T., 2007c. Integrated life-cycle health 
monitoring, maintenance, management and cost of civil infrastructure. 
Proceedings of the International Symposium on Integrated Life-Cycle Design 
and Management of Infrastructures, Tongji University, Shanghai, China, May 
16-18 (keynote paper); in International Symposium on Integrated Life-cycle 
Design and Management of Infrastructure,  Lichu, F., Limin, S., and Zhi, S., 
eds., Tongji University Press, Shanghai, 2007, 216-218. 

Frangopol, D.M., Strauss, A., and Kim, S., 2008.  Bridge Reliability Assessment 
Based on Monitoring.  Journal of Bridge Engineering, ASCE, 13(3), 258-270. 

Fujino, Y, 2008.  Development of a Practical Monitoring System of Urban 
Infrastructure toward Mitigation of Disaster and Accidents.  Proceedings of the 
3rd International Conference on Smart Materials, Structures, and Systems.  13-
18 June, Acireale, Sicily, CIMTEC’08. 

Fujino Y, Abe M., 2004.  Structural health monitoring - current status and future. 
Proceedings of the Second European Workshop on Structural Health 
Monitoring 2004. DEStech Publications: Munich, pp. 3-10. 

Furuta, H., Kameda.T., Nakahara, K., Takahashi, Y., and Frangopol, D. M. 2006.  
Optimal bridge maintenance planning using improved multi-objective genetic 

216 



Chapter 7 References 
 

algorithm.  Structure and Infrastructure Engineering, Taylor & Francis, 2(1), 
33-41. 

Garcia, G. and Stubbs, N., 1997. Application and evaluation of classification 
algorithms to a finite element model of a three-dimensional truss structure for 
nondestructive damage detection. Smart Systems for Bridges, Structures, and 
Highways, Proceedings of SPIE, 3043, 205-216. 

Ghosn, M., 2000.  Development of Truck Weight Regulations Using Bridge 
Reliability Model, Journal of Bridge Engineering, 5(4): 293-303. 

Ghosn, M., Moses, F., Wang, J., 2003.  Design of Highway Bridges for Extreme 
Events.  NCHRP TRB Report 489, Washington, D.C., U.S.A. 

Ghosn, M., Moses, F., 1998.  Redundancy in highway bridge superstructures.  
NCHRP TRB Report 406, Washington, D.C., U.S.A. 

Ghosn, M., and Moses, F., 1986.  Reliability calibration of a bridge design code.  
Journal of Structural Engineering, 112(4), 745–763. 

Gindy, M. and Nassif, H. Effect of bridge live load based on 10 years of WIM data. 
Proceedings of the Third International Conference on Bridge Maintenance and 
Safety, Taylor & Francis, Porto, Portugal,  2006; 9 pages on CD-ROM. 

Glaser, S.D., Li, H., Wang, M.L., Ou, J., and Lynch, J, 2007.  Sensor technology 
innovation for the advancement of structural health monitoring: a strategic 
program of US-China research for the next decade.  Smart Structures and 
Systems, 3(2), pp 221-244 

Glisic, B. and Inaudi, D., 2007.  Fibre Optic Methods for Structural Health 
Monitoring.  John Wiley & Sons, LTD, England. 

Hawk, H., and Small, E.P. 1998.  The BRIDGIT Bridge Management System, 
Structural Engineering International (IABSE, Zurich, Switzerland), 8(4), 309-
314. 

Hearn, G., Frangopol, D.M., 1996.  Segment-based reportingfor element level 
bridge inspection.  Proceedings of the 4th NSF National Workshop on Bridge 
Research in Progress, Buffalo, NY, USA. 

Hendawi, S., 1994. Structural System Reliability with Applications to Bridge Analysis, 
Design and Optimization. Ph.D. Dissertation, Department of Civil, Environmental and 
Architectural Engineering, University of Colorado at Boulder. 

217 



Thomas B. Messervey Integration of SHM into the LCM of Civil Infrastructure 
 
 

Holladay, S., George Washington Bridge (photo).  Available online at 
http://www.flickr.com/search/?q=George+Washington+Bridge+Fort+Lee&page
=10 accessed 12 October, 2008. 

Hoyland, A. and Rausand, M., 1994.  System Reliability Theory: Models and 
Statistical Methods. Wiley-Interscience publication, John Wiley & Sons, NY. 

Inada, T., Shimamura, Y., Todoroki, A., Kobayashi, H. and Nakamura, H., 1999.  
Damage identification method for smart composite cantilever beams with 
piezoelectric materials.  Structural Health Monitoring 2000, Stanford 
University, Palo Alto, California, 986-994. 

Jardin, X., 2007. Minneapolis Bridge Collapse Blog Roundup. Located at 
http://www.boingboing.net/2007/08/02/minneapolis-bridge-c.html accessed 28 
October, 2007. 

Joint Task Committee on Maintenance Engineering, 2004. Infrastructure 
Maintenance Engineering, Japan Society of Civil Engineers. University of 
Tokyo Press, 2004 (in Japanese). 

Kiremidjian, A.S., Sarabandi, P., Cheung, A., Cabrera, C., Nair, K.K., and 
Kiremidjian, G., 2008.  Algorithm for identification of damage on bridge piers.  
Life-Cycle Civil Engineering: Proceedings of the International Symposium on 
Life-Cycle Civil Engineering (IALCCE'08), Varenna, Lake Como, Italy, June 
10-14, 2008, pp. 990, ISBN: 9780415468572, CRC Press - Taylor & Francis 
Group, 935-940. 

Klinzmann, C., Schnetgöke, R. and Hosser, D., 2006. A Framework for Reliability-
Based System Assessment Based on Structural Health Monitoring, Proceedings 
of the 3rd European Workshop on Structural Health Monitoring, Granada, 
Spain.   

Kong, J.S., and Frangopol, D.M., 2004.  Cost-Reliability Interaction in Life-Cycle 
Cost Optimization of Deteriorating Structures, Journal of Structural 
Engineering, ASCE 130(11): 1704-1712. 

Kong, J.S. and Frangopol, D.M., 2003.  Evaluation of expected life-cycle 
maintenance cost of deteriorating structures.  Journal of Structural Engineering, 
Vol. 129, ASCE, May 2003, pp 682-691. 

218 

http://www.boingboing.net/2007/08/02/minneapolis-bridge-c.html


Chapter 7 References 
 

Kong, J.S., and Frangopol, D.M., 2005a. Probabilistic optimization of aging 
structures considering maintenance and failure costs.  Journal of Structural 
Engineering, ASCE, 131(4), 600-616. 

Kong, J.S., and Frangopol, D.M. 2005b.  Sensitivity Analysis in Reliability-Based 
Lifetime Performance Prediction Using Simulation. Journal of Materials in 
Civil Engineering, ASCE, 17(3), 296-306. 

LANL, 2003.  A Review of Structural Health Monitoring Literature: 1996-2001, 
The Los Alamos National Laboratory Report LA 13976-MS, 2003. pp 1-307. 

Lapin, L. L. (1990), Probability and Statistics for Modern Engineering, PWS-Kent, 
Boston. 

Leemis, L.M., 1995.  Reliability: Probabilistic Models and Statistical Methods, 
Prentice-Hall, Englewood Cliffs, N.J., USA. 

Liu, M., and Frangopol, D.M. 2006a. Optimizing bridge network maintenance 
management under uncertainty with conflicting criteria: Life-cycle 
maintenance, failure, and user costs. Journal of Structural Engineering, ASCE, 
132(11), 1835-1845. 

Liu, M. and Frangopol, D.M., 2006b, Probability-Based Bridge Network 
Performance Evaluation, Journal of Bridge Engineering, ASCE, 11(5), 633-
641. 

Liu, M., and Frangopol, D.M., 2005.  Time-dependent bridge network reliability: 
Novel approach. Journal of Structural Engineering, ASCE, 131(2), 329-337. 

Liu, S.C., and Tomizuka, M., 2003, Vision and Strategy for Sensors and Smart 
Structures Technology Research, Proceedings of the 4th International Workshop 
on Structural Health Monitoring, Stanford, CA, September 15-17, 2003. 

Loh, C. H. and Huang, C. C. 1999.  Damage identification of multi-story steel 
frames using neural networks. Structural Health Monitoring 2000, Stanford 
University, Palo Alto, California, 390-399. 

Lynch, J.P., 2007.  An Overview of Wireless Structural Health Monitoring for 
Civil Structures.  Philosophical Transactions of the Royal Society of London. 
Series A, Mathematical and Physical Sciences, The Royal Society, London, 
365(1851):345-372. 

219 



Thomas B. Messervey Integration of SHM into the LCM of Civil Infrastructure 
 
 

Lynch, J.P., and Loh, K., 2005, A Summary Review of Wireless Sensors and 
Sensor Networks for Structural Health Monitoring, Shock and Vibration Digest, 
Sage Publications, 38(2), 91-128.  

Madsen, H.L, Krensk, S., Lind, N.C., 1986.  Methods of Structural Safety.  
Englewood Cliffs, NJ: Prentice-Hall Inc.   

Marsh, P.S., and Frangopol, D.M. 2008. Reinforced concrete bridge deck reliability 
model incorporating temporal and spatial variations of probabilistic corrosion 
rate sensor data. Reliability Engineering & System Safety, Elsevier, 93(3), 394-
409. 

Masri, S. F., Smyth, A. W., Chassiakos, A. G., Caughey, T. K. and Hunter, N. F., 
2000.  Application of neural networks for detection of changes in nonlinear 
systems.  Engineering Mechanics, (6), pp 666-676. 

Matousek M, Schneider J., 1976. Untersuchungen zur Struktur des 
Sicherheitsproblems bei Bauwerken, (in German). Basel: BirkhaEuser, 1976. 

Melchers. R.E., 1999.  Structural Reliability Analysis and Prediction, 2d ed., 
Wiley, Chichester, UK. 

Messervey, T.B., Frangopol, D.M., 2008.  Probabilistic Treatment of Bridge 
Monitoring data and Associated Errors for Reliability Assessment and 
Prediction, Proceedings, IALCCE08, Como, Italy. 

Messervey, T., and Frangopol, D.M., 2007a. A framework to incorporate structural 
health monitoring into reliability-based life-cycle bridge management models. 
Proceedings of the Fifth Computational Stochastic Mechanics Conference, 
Rhodos, Greece, June 21-23, 2006; in Computational Stochastic Mechanics, G. 
Deodatis and P.D. Spanos, eds., Millpress, Rotterdam, 2007, 463-469. 

Messervey, T., and Frangopol, D.M. 2007b. “Bridge live load effects based on 
statistics of extremes using on-site load monitoring,” Proceedings of the 13th 
WG 7.5 Working Conference on Reliability and Optimization of Structural 
Systems, Kobe, Japan. October 13-15, 2006; in Reliability and Optimization of 
Structural Systems: Assessment, design, and life-cycle performance, Frangopol, 
D.M., Kawatani, M., and C-W. Kim, eds., Taylor & Francis Group plc, London, 
2007, 173-180. 

220 



Chapter 7 References 
 

Messervey, T., and Frangopol, D.M. 2007c.  Updating the time-dependent 
reliability using load monitoring data and the statistics of extremes.  
Proceedings of the Fifth International Workshop on Life-Cycle Cost Analysis 
and Design of Civil Infrastructure Systems, Seoul, Korea, October 16-18, 
2006;in Life-Cycle Performance and Cost of Civil Infrastructure, Cho, H-N., 
Frangopol, D.M., and Ang, A-H. S., eds., Taylor & Francis Group plc, London, 
2007, 269-276.  

Messervey, T. B., Frangopol, D. M., and Estes, A.C. 2006. Reliability-based life-
cycle bridge management using structural health monitoring, Proceedings of the 
Third International Conference on Bridge Maintenance and Safety, Porto, 
Portugal, July 16-19, 2006, IABMAS’06. 

Miclic, T.V., Chryssanthopoulos, M.K. and Baker, M.J., 1995.  Reliability analysis 
for highway bridge deck assessment.  Structural Safety, Vol 17, pp 135-150. 

Moon, F.L. and Aktan, A.E., 2006. Structural Identification of Constructed 
Systems and the Impact of Epistemic Uncertainty, Proceedings of the Third 
International Conference on Bridge Maintenance and Safety, Taylor & Francis, 
Porto, Portugal, 2006., IABMAS’06, Taylor & Francis, 8 pages on CD-ROM. 

Mori, Y.; Ellingwood, B.R., 1992.  Reliability-based service -life assessment of 
aging concrete structures. ASCE, Journal of Structural Engineering, 119(5), 
1600-1621. 

Nair, K.K. and Kiremidjian, A.S., 2007.  Time Series-Based Structural Damage 
Detection Algorithm Using Gaussian Mixtures Modeling.  Journal of Dynamic 
Systems, Measurement, and Control, 129, 285–293. 

Neves, L.C., Frangopol, D.M., and Cruz, P.J.S., 2006a.  Lifetime multi-objective 
optimization of maintenance of existing steel structures.  Proceedings of the 
Sixth International Symposium on Steel Bridges, Prague, Czech Republic. 

Neves, L.A.C., Frangopol, D.M., and Cruz, P.J.S. 2006b.  Probabilistic lifetime-
oriented multi-objective optimization of bridge maintenance: single 
maintenance type.  Journal of Structural Engineering, ASCE, 132(6), 991-
1005. 

Neves, L.A.C., Frangopol, D.M., and Petcherdchoo, A. 2006c. Probabilistic 
lifetime-oriented multi-objective optimization of bridge maintenance: 

221 



Thomas B. Messervey Integration of SHM into the LCM of Civil Infrastructure 
 
 
combination of maintenance types. Journal of Structural Engineering, ASCE, 
132(11), 1821-1834. 

Neves, L.C., Petcherdchoo, A., and Frangopol, D.M. 2005. Probabilistic lifetime-
oriented maintenance  optimization of structures, Proceedings of the 9th 
International Conference on Structural Safety and Reliability, ICOSSAR’05, 
Rome, Italy, CD-ROM, 1465-1471. 

Neves, L.C. and Frangopol, D. M. 2004.  Condition, safety, and cost profiles for 
deteriorating structures with emphasis on bridges, Reliability Engineering and 
System Safety, Vol. 89, pp. 185-198. 

Nowak, A.S., 1993.  Live load model for highway bridges. Structural Safety, 13(1–
2): 53–66. 

Nowak, A.S. and Yamani, A.S. (1995). A reliability analysis for girder bridges.  
Structural Engineering  Review, 7(13), 251-256. 

O’Connor, A., and O’Brien, E.J., 2005.  Traffic load modeling and factors 
influencing the accuracy of predicted extremes.  Canadian Journal of Civil 
Engineering, 32, pp. 270-278. 

Peil, U., 2003.  Life-Cycle Prolongation of Civil Engineering Structures via 
Monitoring, Proceedings of the 4th International Workshop on Structural Health 
Monitoring, DEStech Publications, Inc.: 64-78. Stanford, CA, U.S.A. 

Petcherdchoo, A., Neves, L.C., and Frangopol, D.M., 2004.  Combinations of 
Probabilistic Maintenance Actions for Minimum Life-Cycle Cost of 
Deteriorating Bridges.  Proceedings of the second International Conference on 
Bridge Maintenance, Safety, Management, and Cost, IABMAS’04, Tokyo, 
Japan. 

Podoba, Matthew, J., 2007. Minneapolis Bridge Collapse Victims cannot get 
Financial Help for Expenses.  Featured at http://wordpress.com/tag/i35-bridge-
collapse/ accessed 28 Oct 2007. 

PROBAN-2: Example Manual, Report No. 89-2025, A.S Veritas Research, Hovik, 
Norway, August, 1989 

Rackwitz, R., 2004.  Life quality index revisited.  Structural Safety, 26 (2004) pp 
443-451. 

222 

http://wordpress.com/tag/i35-bridge-collapse/
http://wordpress.com/tag/i35-bridge-collapse/


Chapter 7 References 
 

Rackwitz, R., Schrupp, R., 1985. Quality control, proof testing, and structural 
reliability. Structural Safety, 2, 239-244. 

Rafiq MI., 2005.  Health Monitoring in Proactive Reliability Management of 
Deteriorating Concrete Bridges. Doctoral Theses, University of Surrey. 

RELSYS: Estes AC, Frangopol DM. RELSYS: A computer program for structural 
system reliability analysis. Structural Engineering Mechanics 1998; 6(8):901–
919. 

Roberts, J.E., and Shepard, R, 2002.  Bridge Management for the 21st Century.  
Proceedings from the First International Conference on Bridge Maintenance, 
Safety, and Management, IABMAS’02, Barcelona, Spain. 

Ruotolo, R. and Surace, C. 1997.  Damage assessment of multi-cracked beams 
using combinatorial optimization. Structural Damage Assessment Using 
Advanced Signal Processing Procedures, Proceedings of DAMAS ‘97, 
University of Sheffield, UK, 77-86. 

Scott RL, Gallaher RB., 1981.  Review of safety-related events at nuclear power 
plants as reported in 1979. Nuclear Safety  22(4):505–515. 

Small, E.P., and Cooper, J., 1998a, Bridge Management Software Programs, TR 
News, (194), 10-11. 

Small, E.P., and Cooper, J., 1998b, Condition of the Nation’s Highway Bridges. A 
Look at the Post, Present, and Future, TR News, (194), 3-8. 

Sohn, H., Farrar, C. R., Hunter, N. S. and Worden, K., 2001.  Structural health 
monitoring using statistical pattern recognition techniques.  ASME Journal of 
Dynamic Systems, Measurement and Control, 123(4), 706-711. 

Sohn, H., Czarnecki, J. J. and Farrar, C. R., 2000. Structural health monitoring 
using statistical process control.  Structural Engineering, 126(11), 1356-1363. 

Sohn, H. and Law, K. L. 1997.  A Bayesian probabilistic approach for structure 
damage detection, Earthq. Eng. Struct. Dyn., 26(12), 1259-1281. 

Sterritt, G., 2000.  Probabilistic procedures for lifetime management of reinforced 
concrete highway bridges.  Department of Civil and Environmental 
Engineering, University of London, Imperial college of Sciences, Technology 
and Medicine. 

223 



Thomas B. Messervey Integration of SHM into the LCM of Civil Infrastructure 
 
 

Stewart, M.G., Melchers, R.E., 1997.  Probabilistic Risk Assessment of 
Engineering Systems, Chapman & Hall, London. 

STRUREL Vesion 6.1, Theoretical, Technical and Users Manual.  Munich: RCP-
GmbH.  1998. 

Susoy, M., Catbas, N., and Frangopol, D.M., 2007.  SHM development using 
system reliability.  Proceedings of the Tenth International Conference on 
Applications of Statistics and Probability in Civil Engineering, ICASP 10, 
Tokyo, Japan. July 31-August 3, 2007; in Applications of Statistics and 
Probability in Civil Engineering, Kanda, J., Takada, T., and Furuta, H., eds., 
Taylor & Francis Group plc, London, 2007, 79-80. 

Thoft-Christensen, P., 1998.  Assessment of the reliability profiles for concrete 
bridges.  Engineering Structures, Vol. 20, No. 11, pp 1004-1009.  

Thoft-Christensen, P., 1993.  Reliability-based expert systems for optimal 
maintenance of concrete bridges.  Proceedings of ASCE Structural Congress 93, 
California. 

Thoft-Christensen, P., Jensen, F.M., Middleton, C.R. and Blackmore, A., 1996.  
Assessment of the reliability of concrete slab bridges.  Proceedings of the 7th 
IFIP WG 7.5 Working Conference on the Reliability and Optimization of 
Structural Systems.  D.M. Frangopol, R.B. Corotis, R. Rackwitz (eds.), pp 321-
328.   

Thoft-Christensen, P. and Hansen, H.I., 1993.  Optimal strategy for maintenance of 
concrete bridges using expert systems.  Proceedings ICOSSAR ’93, Innsbruck, 
pp 939-946. 

Thoft-Christensen, P. and Baker, M., 1982.  Structural Reliability Theory and its 
Applications, Springer Verlag, New York, ISBN: 0387117318. 

Thompson, P.D., Small, E.P., Johnson, M., and Marshall, A.R. (1998), The Pontis 
Bridge Management System, Structural Engineering International (IABSE, 
Zurich, Switzerland), 8(4), 303-308. 

Tolliver D., 1994.  Highway Impact Assessment: Techniques and Procedures for 
Transportation Planners and Managers. Quorum Books: Westport, CT. 

224 



Chapter 7 References 
 

225 

U.S. Army Corps of Engineers: USACE, 1992. Reliability Assessment of 
Navigation Structures, ETL 1110-2-532.  Corps of Engineers Engineering and 
Design Division.  Department of the Army, Washington D.C. 

Val, D.V., Stewart, M.G., and Melchers, R.E., 2000.  Life-cycle performance of 
RC bridges: probabilistic approach.  Computer-Aided Civil Infrastructure 
Engineering, Vol. 15, pp 14-25. 

Val, D.V., Stewart, M.G., and Melchers, R.E., 1998.  Effect of reinforcement 
corrosion on the reliability of highway bridges.  Engineering Structures, Vol. 
20, No. 11, pp 1010-1019. 

Watanabe, E., Frangopol, D.M., and Utsunomiya, T., 2004. Bridge Maintenance, 
Safety, Management and Cost, Book (ISBN 90-5809-680-7, 1016 pages) and 
CD-ROM (ISBN 04-1536-336-X, 347 full length papers), A.A. Balkema, Swets 
& Zeitlinger B.V., Lisse, The Netherlands. 

Wikipedia, 2008a.  Northeast Blackout of 2003.  Available online at 
http://en.wikipedia.org/wiki/2003_North_America_blackout accessed 12 
October, 2008.  

Wikipedia, 2008b.  Hurricane Katrina.  Available online at http://en.wikipedia.org/ 
wiki/Hurricane_katrina  accessed 12 October, 2008. 

Worden, K. and Lane, A. J., 2001.  Damage identification using support vector 
machines.  Smart Material Structures, 10, 540-547. 

Val, D.V., Bljuger, F. and Yankelevsky, D., 1997.  Reliability evaluation in 
nonlinear analysis of reinforced concrete structures.  Structural Safety, Vol. 19, 
No. 2, pp 203-217. 

Zokaie, T., Imbsen, R.A., and Osterkamp, T.A., 1991.  Distribution of Wheel 
Loads on Highway Bridges, Transportation Research Record 1290, 119-126, 
Washington D.C., U.S.A. 

 

http://en.wikipedia.org/wiki/2003_North_America_blackout
http://en.wikipedia.org/

	0d-titlepage.pdf
	Dottorato  di  Ricerca  in  Ingegneria  Civile
	Graduate School in Civil Engineering
	Ph.D. Thesis



	0b-PrefaceFinal
	Preface

	0c-IndexMesservey
	Dipartimento di Meccanica Strutturale
	Via Ferrata, 1 27100 – Pavia – Italy
	Via Ferrata, 1 27100 – Pavia – Italy
	Dipartimento di Meccanica Strutturale
	Via Ferrata, 1 27100 – Pavia – Italy
	Previous Ph.D. Theses
	Table of Conents
	Chapters
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7

	Chapter1_MesserveyFinal
	1.1 Underlying Grant and Research Topic
	1.2 Organization of the thesis 

	Chapter2_MesserveyFinal
	2.1 Motivation

	Chapter3_MesserveyFinal
	3.1 Introduction
	3.2 Monitoring as a Catalyst to Improve Design
	3.3 Monitoring as a Catalyst to Improve Assessment, Performance Prediction, and Management 
	3.4 Application 
	3.5 Conclusion 

	Chapter4_MesserveyFinal
	4.1 Introduction
	4.2 Consideration of Funding, Ownership, Responsibility, and Public Policy
	4.3 Strategic Level Adoptions in Concert
	4.4 Structure Level Frameworks for the Inclusion of SHM
	4.5 Top-Down Approach to the Design of SHM Systems
	4.6 Estimating the Utility of Monitoring Solutions in a Life-Cycle Context
	4.7 Application
	4.8 Conclusions

	Chapter5_MesserveyFinal
	5.1 Introduction
	5.2 Theoretical Background and Application to the Design and Assessment of Highway Bridges
	5.3 Characterizing Monitoring Based EVDs and their use in a Reliability Analysis
	5.4 Application
	5.5 Conclusions

	Chapter6_MesserveyFinal
	6.1 Introduction
	6.2 Classical Lifetime Functions
	6.3 Application of Lifetime Functions to Civil Structures
	6.4 The Construction of Time-Dependent Reliability Profiles
	6.5 Application
	6.6 Conclusions

	Chapter7_MesserveyFinal
	7.1 Conclusions from the Investigation
	7.2 Areas for Continued Research

	ThesisReferences_MesserveyFinal

